This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Non-divisibility property of the prime power pre-function. (Contributed by Mario Carneiro, 23-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pclem.1 | ⊢ 𝐴 = { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑁 } | |
| pclem.2 | ⊢ 𝑆 = sup ( 𝐴 , ℝ , < ) | ||
| Assertion | pcprendvds | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ¬ ( 𝑃 ↑ ( 𝑆 + 1 ) ) ∥ 𝑁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pclem.1 | ⊢ 𝐴 = { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑁 } | |
| 2 | pclem.2 | ⊢ 𝑆 = sup ( 𝐴 , ℝ , < ) | |
| 3 | 1 2 | pcprecl | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑆 ∈ ℕ0 ∧ ( 𝑃 ↑ 𝑆 ) ∥ 𝑁 ) ) |
| 4 | 3 | simpld | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → 𝑆 ∈ ℕ0 ) |
| 5 | nn0re | ⊢ ( 𝑆 ∈ ℕ0 → 𝑆 ∈ ℝ ) | |
| 6 | ltp1 | ⊢ ( 𝑆 ∈ ℝ → 𝑆 < ( 𝑆 + 1 ) ) | |
| 7 | peano2re | ⊢ ( 𝑆 ∈ ℝ → ( 𝑆 + 1 ) ∈ ℝ ) | |
| 8 | ltnle | ⊢ ( ( 𝑆 ∈ ℝ ∧ ( 𝑆 + 1 ) ∈ ℝ ) → ( 𝑆 < ( 𝑆 + 1 ) ↔ ¬ ( 𝑆 + 1 ) ≤ 𝑆 ) ) | |
| 9 | 7 8 | mpdan | ⊢ ( 𝑆 ∈ ℝ → ( 𝑆 < ( 𝑆 + 1 ) ↔ ¬ ( 𝑆 + 1 ) ≤ 𝑆 ) ) |
| 10 | 6 9 | mpbid | ⊢ ( 𝑆 ∈ ℝ → ¬ ( 𝑆 + 1 ) ≤ 𝑆 ) |
| 11 | 4 5 10 | 3syl | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ¬ ( 𝑆 + 1 ) ≤ 𝑆 ) |
| 12 | 1 | pclem | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) |
| 13 | peano2nn0 | ⊢ ( 𝑆 ∈ ℕ0 → ( 𝑆 + 1 ) ∈ ℕ0 ) | |
| 14 | oveq2 | ⊢ ( 𝑥 = ( 𝑆 + 1 ) → ( 𝑃 ↑ 𝑥 ) = ( 𝑃 ↑ ( 𝑆 + 1 ) ) ) | |
| 15 | 14 | breq1d | ⊢ ( 𝑥 = ( 𝑆 + 1 ) → ( ( 𝑃 ↑ 𝑥 ) ∥ 𝑁 ↔ ( 𝑃 ↑ ( 𝑆 + 1 ) ) ∥ 𝑁 ) ) |
| 16 | oveq2 | ⊢ ( 𝑛 = 𝑥 → ( 𝑃 ↑ 𝑛 ) = ( 𝑃 ↑ 𝑥 ) ) | |
| 17 | 16 | breq1d | ⊢ ( 𝑛 = 𝑥 → ( ( 𝑃 ↑ 𝑛 ) ∥ 𝑁 ↔ ( 𝑃 ↑ 𝑥 ) ∥ 𝑁 ) ) |
| 18 | 17 | cbvrabv | ⊢ { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑁 } = { 𝑥 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑥 ) ∥ 𝑁 } |
| 19 | 1 18 | eqtri | ⊢ 𝐴 = { 𝑥 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑥 ) ∥ 𝑁 } |
| 20 | 15 19 | elrab2 | ⊢ ( ( 𝑆 + 1 ) ∈ 𝐴 ↔ ( ( 𝑆 + 1 ) ∈ ℕ0 ∧ ( 𝑃 ↑ ( 𝑆 + 1 ) ) ∥ 𝑁 ) ) |
| 21 | 20 | simplbi2 | ⊢ ( ( 𝑆 + 1 ) ∈ ℕ0 → ( ( 𝑃 ↑ ( 𝑆 + 1 ) ) ∥ 𝑁 → ( 𝑆 + 1 ) ∈ 𝐴 ) ) |
| 22 | 4 13 21 | 3syl | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( ( 𝑃 ↑ ( 𝑆 + 1 ) ) ∥ 𝑁 → ( 𝑆 + 1 ) ∈ 𝐴 ) ) |
| 23 | suprzub | ⊢ ( ( 𝐴 ⊆ ℤ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ∧ ( 𝑆 + 1 ) ∈ 𝐴 ) → ( 𝑆 + 1 ) ≤ sup ( 𝐴 , ℝ , < ) ) | |
| 24 | 23 2 | breqtrrdi | ⊢ ( ( 𝐴 ⊆ ℤ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ∧ ( 𝑆 + 1 ) ∈ 𝐴 ) → ( 𝑆 + 1 ) ≤ 𝑆 ) |
| 25 | 24 | 3expia | ⊢ ( ( 𝐴 ⊆ ℤ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → ( ( 𝑆 + 1 ) ∈ 𝐴 → ( 𝑆 + 1 ) ≤ 𝑆 ) ) |
| 26 | 25 | 3adant2 | ⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → ( ( 𝑆 + 1 ) ∈ 𝐴 → ( 𝑆 + 1 ) ≤ 𝑆 ) ) |
| 27 | 12 22 26 | sylsyld | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( ( 𝑃 ↑ ( 𝑆 + 1 ) ) ∥ 𝑁 → ( 𝑆 + 1 ) ≤ 𝑆 ) ) |
| 28 | 11 27 | mtod | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ¬ ( 𝑃 ↑ ( 𝑆 + 1 ) ) ∥ 𝑁 ) |