This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: - Lemma for the prime power pre-function's properties. (Contributed by Mario Carneiro, 23-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pclem.1 | ⊢ 𝐴 = { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑁 } | |
| Assertion | pclem | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pclem.1 | ⊢ 𝐴 = { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑁 } | |
| 2 | 1 | ssrab3 | ⊢ 𝐴 ⊆ ℕ0 |
| 3 | nn0ssz | ⊢ ℕ0 ⊆ ℤ | |
| 4 | 2 3 | sstri | ⊢ 𝐴 ⊆ ℤ |
| 5 | 4 | a1i | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → 𝐴 ⊆ ℤ ) |
| 6 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 7 | 6 | a1i | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → 0 ∈ ℕ0 ) |
| 8 | eluzelcn | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 𝑃 ∈ ℂ ) | |
| 9 | 8 | adantr | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → 𝑃 ∈ ℂ ) |
| 10 | 9 | exp0d | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑃 ↑ 0 ) = 1 ) |
| 11 | 1dvds | ⊢ ( 𝑁 ∈ ℤ → 1 ∥ 𝑁 ) | |
| 12 | 11 | ad2antrl | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → 1 ∥ 𝑁 ) |
| 13 | 10 12 | eqbrtrd | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑃 ↑ 0 ) ∥ 𝑁 ) |
| 14 | oveq2 | ⊢ ( 𝑛 = 0 → ( 𝑃 ↑ 𝑛 ) = ( 𝑃 ↑ 0 ) ) | |
| 15 | 14 | breq1d | ⊢ ( 𝑛 = 0 → ( ( 𝑃 ↑ 𝑛 ) ∥ 𝑁 ↔ ( 𝑃 ↑ 0 ) ∥ 𝑁 ) ) |
| 16 | 15 1 | elrab2 | ⊢ ( 0 ∈ 𝐴 ↔ ( 0 ∈ ℕ0 ∧ ( 𝑃 ↑ 0 ) ∥ 𝑁 ) ) |
| 17 | 7 13 16 | sylanbrc | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → 0 ∈ 𝐴 ) |
| 18 | 17 | ne0d | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → 𝐴 ≠ ∅ ) |
| 19 | nnssz | ⊢ ℕ ⊆ ℤ | |
| 20 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 21 | 20 | abscld | ⊢ ( 𝑁 ∈ ℤ → ( abs ‘ 𝑁 ) ∈ ℝ ) |
| 22 | 21 | ad2antrl | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( abs ‘ 𝑁 ) ∈ ℝ ) |
| 23 | eluzelre | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 𝑃 ∈ ℝ ) | |
| 24 | 23 | adantr | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → 𝑃 ∈ ℝ ) |
| 25 | eluz2gt1 | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 1 < 𝑃 ) | |
| 26 | 25 | adantr | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → 1 < 𝑃 ) |
| 27 | expnbnd | ⊢ ( ( ( abs ‘ 𝑁 ) ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ 1 < 𝑃 ) → ∃ 𝑥 ∈ ℕ ( abs ‘ 𝑁 ) < ( 𝑃 ↑ 𝑥 ) ) | |
| 28 | 22 24 26 27 | syl3anc | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ∃ 𝑥 ∈ ℕ ( abs ‘ 𝑁 ) < ( 𝑃 ↑ 𝑥 ) ) |
| 29 | simprr | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → 𝑦 ∈ 𝐴 ) | |
| 30 | oveq2 | ⊢ ( 𝑛 = 𝑦 → ( 𝑃 ↑ 𝑛 ) = ( 𝑃 ↑ 𝑦 ) ) | |
| 31 | 30 | breq1d | ⊢ ( 𝑛 = 𝑦 → ( ( 𝑃 ↑ 𝑛 ) ∥ 𝑁 ↔ ( 𝑃 ↑ 𝑦 ) ∥ 𝑁 ) ) |
| 32 | 31 1 | elrab2 | ⊢ ( 𝑦 ∈ 𝐴 ↔ ( 𝑦 ∈ ℕ0 ∧ ( 𝑃 ↑ 𝑦 ) ∥ 𝑁 ) ) |
| 33 | 29 32 | sylib | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑦 ∈ ℕ0 ∧ ( 𝑃 ↑ 𝑦 ) ∥ 𝑁 ) ) |
| 34 | 33 | simprd | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑃 ↑ 𝑦 ) ∥ 𝑁 ) |
| 35 | eluz2nn | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 𝑃 ∈ ℕ ) | |
| 36 | 35 | ad2antrr | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → 𝑃 ∈ ℕ ) |
| 37 | 33 | simpld | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → 𝑦 ∈ ℕ0 ) |
| 38 | 36 37 | nnexpcld | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑃 ↑ 𝑦 ) ∈ ℕ ) |
| 39 | 38 | nnzd | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑃 ↑ 𝑦 ) ∈ ℤ ) |
| 40 | simplrl | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → 𝑁 ∈ ℤ ) | |
| 41 | simplrr | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → 𝑁 ≠ 0 ) | |
| 42 | dvdsleabs | ⊢ ( ( ( 𝑃 ↑ 𝑦 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( ( 𝑃 ↑ 𝑦 ) ∥ 𝑁 → ( 𝑃 ↑ 𝑦 ) ≤ ( abs ‘ 𝑁 ) ) ) | |
| 43 | 39 40 41 42 | syl3anc | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝑃 ↑ 𝑦 ) ∥ 𝑁 → ( 𝑃 ↑ 𝑦 ) ≤ ( abs ‘ 𝑁 ) ) ) |
| 44 | 34 43 | mpd | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑃 ↑ 𝑦 ) ≤ ( abs ‘ 𝑁 ) ) |
| 45 | 38 | nnred | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑃 ↑ 𝑦 ) ∈ ℝ ) |
| 46 | 22 | adantr | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → ( abs ‘ 𝑁 ) ∈ ℝ ) |
| 47 | 23 | ad2antrr | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → 𝑃 ∈ ℝ ) |
| 48 | nnnn0 | ⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℕ0 ) | |
| 49 | 48 | ad2antrl | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → 𝑥 ∈ ℕ0 ) |
| 50 | 47 49 | reexpcld | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑃 ↑ 𝑥 ) ∈ ℝ ) |
| 51 | lelttr | ⊢ ( ( ( 𝑃 ↑ 𝑦 ) ∈ ℝ ∧ ( abs ‘ 𝑁 ) ∈ ℝ ∧ ( 𝑃 ↑ 𝑥 ) ∈ ℝ ) → ( ( ( 𝑃 ↑ 𝑦 ) ≤ ( abs ‘ 𝑁 ) ∧ ( abs ‘ 𝑁 ) < ( 𝑃 ↑ 𝑥 ) ) → ( 𝑃 ↑ 𝑦 ) < ( 𝑃 ↑ 𝑥 ) ) ) | |
| 52 | 45 46 50 51 | syl3anc | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → ( ( ( 𝑃 ↑ 𝑦 ) ≤ ( abs ‘ 𝑁 ) ∧ ( abs ‘ 𝑁 ) < ( 𝑃 ↑ 𝑥 ) ) → ( 𝑃 ↑ 𝑦 ) < ( 𝑃 ↑ 𝑥 ) ) ) |
| 53 | 44 52 | mpand | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → ( ( abs ‘ 𝑁 ) < ( 𝑃 ↑ 𝑥 ) → ( 𝑃 ↑ 𝑦 ) < ( 𝑃 ↑ 𝑥 ) ) ) |
| 54 | 37 | nn0zd | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → 𝑦 ∈ ℤ ) |
| 55 | nnz | ⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℤ ) | |
| 56 | 55 | ad2antrl | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → 𝑥 ∈ ℤ ) |
| 57 | 25 | ad2antrr | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → 1 < 𝑃 ) |
| 58 | 47 54 56 57 | ltexp2d | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑦 < 𝑥 ↔ ( 𝑃 ↑ 𝑦 ) < ( 𝑃 ↑ 𝑥 ) ) ) |
| 59 | 53 58 | sylibrd | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → ( ( abs ‘ 𝑁 ) < ( 𝑃 ↑ 𝑥 ) → 𝑦 < 𝑥 ) ) |
| 60 | 37 | nn0red | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → 𝑦 ∈ ℝ ) |
| 61 | nnre | ⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℝ ) | |
| 62 | 61 | ad2antrl | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → 𝑥 ∈ ℝ ) |
| 63 | ltle | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑦 < 𝑥 → 𝑦 ≤ 𝑥 ) ) | |
| 64 | 60 62 63 | syl2anc | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑦 < 𝑥 → 𝑦 ≤ 𝑥 ) ) |
| 65 | 59 64 | syld | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → ( ( abs ‘ 𝑁 ) < ( 𝑃 ↑ 𝑥 ) → 𝑦 ≤ 𝑥 ) ) |
| 66 | 65 | anassrs | ⊢ ( ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ 𝑥 ∈ ℕ ) ∧ 𝑦 ∈ 𝐴 ) → ( ( abs ‘ 𝑁 ) < ( 𝑃 ↑ 𝑥 ) → 𝑦 ≤ 𝑥 ) ) |
| 67 | 66 | ralrimdva | ⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ 𝑥 ∈ ℕ ) → ( ( abs ‘ 𝑁 ) < ( 𝑃 ↑ 𝑥 ) → ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) |
| 68 | 67 | reximdva | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( ∃ 𝑥 ∈ ℕ ( abs ‘ 𝑁 ) < ( 𝑃 ↑ 𝑥 ) → ∃ 𝑥 ∈ ℕ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) |
| 69 | 28 68 | mpd | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ∃ 𝑥 ∈ ℕ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) |
| 70 | ssrexv | ⊢ ( ℕ ⊆ ℤ → ( ∃ 𝑥 ∈ ℕ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) | |
| 71 | 19 69 70 | mpsyl | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) |
| 72 | 5 18 71 | 3jca | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) |