This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Non-divisibility property of the prime power pre-function. (Contributed by Mario Carneiro, 23-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pclem.1 | ⊢ 𝐴 = { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑁 } | |
| pclem.2 | ⊢ 𝑆 = sup ( 𝐴 , ℝ , < ) | ||
| Assertion | pcprendvds2 | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ¬ 𝑃 ∥ ( 𝑁 / ( 𝑃 ↑ 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pclem.1 | ⊢ 𝐴 = { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑁 } | |
| 2 | pclem.2 | ⊢ 𝑆 = sup ( 𝐴 , ℝ , < ) | |
| 3 | 1 2 | pcprendvds | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ¬ ( 𝑃 ↑ ( 𝑆 + 1 ) ) ∥ 𝑁 ) |
| 4 | eluz2nn | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 𝑃 ∈ ℕ ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → 𝑃 ∈ ℕ ) |
| 6 | 5 | nnzd | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → 𝑃 ∈ ℤ ) |
| 7 | 1 2 | pcprecl | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑆 ∈ ℕ0 ∧ ( 𝑃 ↑ 𝑆 ) ∥ 𝑁 ) ) |
| 8 | 7 | simprd | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑃 ↑ 𝑆 ) ∥ 𝑁 ) |
| 9 | 7 | simpld | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → 𝑆 ∈ ℕ0 ) |
| 10 | 5 9 | nnexpcld | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑃 ↑ 𝑆 ) ∈ ℕ ) |
| 11 | 10 | nnzd | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑃 ↑ 𝑆 ) ∈ ℤ ) |
| 12 | 10 | nnne0d | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑃 ↑ 𝑆 ) ≠ 0 ) |
| 13 | simprl | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → 𝑁 ∈ ℤ ) | |
| 14 | dvdsval2 | ⊢ ( ( ( 𝑃 ↑ 𝑆 ) ∈ ℤ ∧ ( 𝑃 ↑ 𝑆 ) ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( ( 𝑃 ↑ 𝑆 ) ∥ 𝑁 ↔ ( 𝑁 / ( 𝑃 ↑ 𝑆 ) ) ∈ ℤ ) ) | |
| 15 | 11 12 13 14 | syl3anc | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( ( 𝑃 ↑ 𝑆 ) ∥ 𝑁 ↔ ( 𝑁 / ( 𝑃 ↑ 𝑆 ) ) ∈ ℤ ) ) |
| 16 | 8 15 | mpbid | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑁 / ( 𝑃 ↑ 𝑆 ) ) ∈ ℤ ) |
| 17 | dvdscmul | ⊢ ( ( 𝑃 ∈ ℤ ∧ ( 𝑁 / ( 𝑃 ↑ 𝑆 ) ) ∈ ℤ ∧ ( 𝑃 ↑ 𝑆 ) ∈ ℤ ) → ( 𝑃 ∥ ( 𝑁 / ( 𝑃 ↑ 𝑆 ) ) → ( ( 𝑃 ↑ 𝑆 ) · 𝑃 ) ∥ ( ( 𝑃 ↑ 𝑆 ) · ( 𝑁 / ( 𝑃 ↑ 𝑆 ) ) ) ) ) | |
| 18 | 6 16 11 17 | syl3anc | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑃 ∥ ( 𝑁 / ( 𝑃 ↑ 𝑆 ) ) → ( ( 𝑃 ↑ 𝑆 ) · 𝑃 ) ∥ ( ( 𝑃 ↑ 𝑆 ) · ( 𝑁 / ( 𝑃 ↑ 𝑆 ) ) ) ) ) |
| 19 | 5 | nncnd | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → 𝑃 ∈ ℂ ) |
| 20 | 19 9 | expp1d | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑃 ↑ ( 𝑆 + 1 ) ) = ( ( 𝑃 ↑ 𝑆 ) · 𝑃 ) ) |
| 21 | 20 | eqcomd | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( ( 𝑃 ↑ 𝑆 ) · 𝑃 ) = ( 𝑃 ↑ ( 𝑆 + 1 ) ) ) |
| 22 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 23 | 22 | ad2antrl | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → 𝑁 ∈ ℂ ) |
| 24 | 10 | nncnd | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑃 ↑ 𝑆 ) ∈ ℂ ) |
| 25 | 23 24 12 | divcan2d | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( ( 𝑃 ↑ 𝑆 ) · ( 𝑁 / ( 𝑃 ↑ 𝑆 ) ) ) = 𝑁 ) |
| 26 | 21 25 | breq12d | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( ( ( 𝑃 ↑ 𝑆 ) · 𝑃 ) ∥ ( ( 𝑃 ↑ 𝑆 ) · ( 𝑁 / ( 𝑃 ↑ 𝑆 ) ) ) ↔ ( 𝑃 ↑ ( 𝑆 + 1 ) ) ∥ 𝑁 ) ) |
| 27 | 18 26 | sylibd | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑃 ∥ ( 𝑁 / ( 𝑃 ↑ 𝑆 ) ) → ( 𝑃 ↑ ( 𝑆 + 1 ) ) ∥ 𝑁 ) ) |
| 28 | 3 27 | mtod | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ¬ 𝑃 ∥ ( 𝑁 / ( 𝑃 ↑ 𝑆 ) ) ) |