This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Non-divisibility property of the prime power pre-function. (Contributed by Mario Carneiro, 23-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pclem.1 | |- A = { n e. NN0 | ( P ^ n ) || N } |
|
| pclem.2 | |- S = sup ( A , RR , < ) |
||
| Assertion | pcprendvds | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> -. ( P ^ ( S + 1 ) ) || N ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pclem.1 | |- A = { n e. NN0 | ( P ^ n ) || N } |
|
| 2 | pclem.2 | |- S = sup ( A , RR , < ) |
|
| 3 | 1 2 | pcprecl | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( S e. NN0 /\ ( P ^ S ) || N ) ) |
| 4 | 3 | simpld | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> S e. NN0 ) |
| 5 | nn0re | |- ( S e. NN0 -> S e. RR ) |
|
| 6 | ltp1 | |- ( S e. RR -> S < ( S + 1 ) ) |
|
| 7 | peano2re | |- ( S e. RR -> ( S + 1 ) e. RR ) |
|
| 8 | ltnle | |- ( ( S e. RR /\ ( S + 1 ) e. RR ) -> ( S < ( S + 1 ) <-> -. ( S + 1 ) <_ S ) ) |
|
| 9 | 7 8 | mpdan | |- ( S e. RR -> ( S < ( S + 1 ) <-> -. ( S + 1 ) <_ S ) ) |
| 10 | 6 9 | mpbid | |- ( S e. RR -> -. ( S + 1 ) <_ S ) |
| 11 | 4 5 10 | 3syl | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> -. ( S + 1 ) <_ S ) |
| 12 | 1 | pclem | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( A C_ ZZ /\ A =/= (/) /\ E. x e. ZZ A. y e. A y <_ x ) ) |
| 13 | peano2nn0 | |- ( S e. NN0 -> ( S + 1 ) e. NN0 ) |
|
| 14 | oveq2 | |- ( x = ( S + 1 ) -> ( P ^ x ) = ( P ^ ( S + 1 ) ) ) |
|
| 15 | 14 | breq1d | |- ( x = ( S + 1 ) -> ( ( P ^ x ) || N <-> ( P ^ ( S + 1 ) ) || N ) ) |
| 16 | oveq2 | |- ( n = x -> ( P ^ n ) = ( P ^ x ) ) |
|
| 17 | 16 | breq1d | |- ( n = x -> ( ( P ^ n ) || N <-> ( P ^ x ) || N ) ) |
| 18 | 17 | cbvrabv | |- { n e. NN0 | ( P ^ n ) || N } = { x e. NN0 | ( P ^ x ) || N } |
| 19 | 1 18 | eqtri | |- A = { x e. NN0 | ( P ^ x ) || N } |
| 20 | 15 19 | elrab2 | |- ( ( S + 1 ) e. A <-> ( ( S + 1 ) e. NN0 /\ ( P ^ ( S + 1 ) ) || N ) ) |
| 21 | 20 | simplbi2 | |- ( ( S + 1 ) e. NN0 -> ( ( P ^ ( S + 1 ) ) || N -> ( S + 1 ) e. A ) ) |
| 22 | 4 13 21 | 3syl | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( P ^ ( S + 1 ) ) || N -> ( S + 1 ) e. A ) ) |
| 23 | suprzub | |- ( ( A C_ ZZ /\ E. x e. ZZ A. y e. A y <_ x /\ ( S + 1 ) e. A ) -> ( S + 1 ) <_ sup ( A , RR , < ) ) |
|
| 24 | 23 2 | breqtrrdi | |- ( ( A C_ ZZ /\ E. x e. ZZ A. y e. A y <_ x /\ ( S + 1 ) e. A ) -> ( S + 1 ) <_ S ) |
| 25 | 24 | 3expia | |- ( ( A C_ ZZ /\ E. x e. ZZ A. y e. A y <_ x ) -> ( ( S + 1 ) e. A -> ( S + 1 ) <_ S ) ) |
| 26 | 25 | 3adant2 | |- ( ( A C_ ZZ /\ A =/= (/) /\ E. x e. ZZ A. y e. A y <_ x ) -> ( ( S + 1 ) e. A -> ( S + 1 ) <_ S ) ) |
| 27 | 12 22 26 | sylsyld | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( P ^ ( S + 1 ) ) || N -> ( S + 1 ) <_ S ) ) |
| 28 | 11 27 | mtod | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> -. ( P ^ ( S + 1 ) ) || N ) |