This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The projective sum of two subspaces is a subspace. Part of Lemma 16.2 of MaedaMaeda p. 68. (Contributed by NM, 14-Jan-2012) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | paddidm.s | ⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) | |
| paddidm.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | ||
| Assertion | paddclN | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( 𝑋 + 𝑌 ) ∈ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | paddidm.s | ⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) | |
| 2 | paddidm.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | |
| 3 | simp1 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → 𝐾 ∈ HL ) | |
| 4 | eqid | ⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) | |
| 5 | 4 1 | psubssat | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ⊆ ( Atoms ‘ 𝐾 ) ) |
| 6 | 5 | 3adant3 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → 𝑋 ⊆ ( Atoms ‘ 𝐾 ) ) |
| 7 | 4 1 | psubssat | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ∈ 𝑆 ) → 𝑌 ⊆ ( Atoms ‘ 𝐾 ) ) |
| 8 | 7 | 3adant2 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → 𝑌 ⊆ ( Atoms ‘ 𝐾 ) ) |
| 9 | 4 2 | paddssat | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ ( Atoms ‘ 𝐾 ) ∧ 𝑌 ⊆ ( Atoms ‘ 𝐾 ) ) → ( 𝑋 + 𝑌 ) ⊆ ( Atoms ‘ 𝐾 ) ) |
| 10 | 3 6 8 9 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( 𝑋 + 𝑌 ) ⊆ ( Atoms ‘ 𝐾 ) ) |
| 11 | olc | ⊢ ( ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ∃ 𝑞 ∈ ( 𝑋 + 𝑌 ) ∃ 𝑟 ∈ ( 𝑋 + 𝑌 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) → ( ( 𝑝 ∈ ( 𝑋 + 𝑌 ) ∨ 𝑝 ∈ ( 𝑋 + 𝑌 ) ) ∨ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ∃ 𝑞 ∈ ( 𝑋 + 𝑌 ) ∃ 𝑟 ∈ ( 𝑋 + 𝑌 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) ) ) | |
| 12 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
| 13 | eqid | ⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) | |
| 14 | 12 13 4 2 | elpadd | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 + 𝑌 ) ⊆ ( Atoms ‘ 𝐾 ) ∧ ( 𝑋 + 𝑌 ) ⊆ ( Atoms ‘ 𝐾 ) ) → ( 𝑝 ∈ ( ( 𝑋 + 𝑌 ) + ( 𝑋 + 𝑌 ) ) ↔ ( ( 𝑝 ∈ ( 𝑋 + 𝑌 ) ∨ 𝑝 ∈ ( 𝑋 + 𝑌 ) ) ∨ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ∃ 𝑞 ∈ ( 𝑋 + 𝑌 ) ∃ 𝑟 ∈ ( 𝑋 + 𝑌 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) ) ) ) |
| 15 | 3 10 10 14 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( 𝑝 ∈ ( ( 𝑋 + 𝑌 ) + ( 𝑋 + 𝑌 ) ) ↔ ( ( 𝑝 ∈ ( 𝑋 + 𝑌 ) ∨ 𝑝 ∈ ( 𝑋 + 𝑌 ) ) ∨ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ∃ 𝑞 ∈ ( 𝑋 + 𝑌 ) ∃ 𝑟 ∈ ( 𝑋 + 𝑌 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) ) ) ) |
| 16 | 4 2 | padd4N | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ ( Atoms ‘ 𝐾 ) ∧ 𝑌 ⊆ ( Atoms ‘ 𝐾 ) ) ∧ ( 𝑋 ⊆ ( Atoms ‘ 𝐾 ) ∧ 𝑌 ⊆ ( Atoms ‘ 𝐾 ) ) ) → ( ( 𝑋 + 𝑌 ) + ( 𝑋 + 𝑌 ) ) = ( ( 𝑋 + 𝑋 ) + ( 𝑌 + 𝑌 ) ) ) |
| 17 | 3 6 8 6 8 16 | syl122anc | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( ( 𝑋 + 𝑌 ) + ( 𝑋 + 𝑌 ) ) = ( ( 𝑋 + 𝑋 ) + ( 𝑌 + 𝑌 ) ) ) |
| 18 | 1 2 | paddidm | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ) → ( 𝑋 + 𝑋 ) = 𝑋 ) |
| 19 | 18 | 3adant3 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( 𝑋 + 𝑋 ) = 𝑋 ) |
| 20 | 1 2 | paddidm | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ∈ 𝑆 ) → ( 𝑌 + 𝑌 ) = 𝑌 ) |
| 21 | 20 | 3adant2 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( 𝑌 + 𝑌 ) = 𝑌 ) |
| 22 | 19 21 | oveq12d | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( ( 𝑋 + 𝑋 ) + ( 𝑌 + 𝑌 ) ) = ( 𝑋 + 𝑌 ) ) |
| 23 | 17 22 | eqtrd | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( ( 𝑋 + 𝑌 ) + ( 𝑋 + 𝑌 ) ) = ( 𝑋 + 𝑌 ) ) |
| 24 | 23 | eleq2d | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( 𝑝 ∈ ( ( 𝑋 + 𝑌 ) + ( 𝑋 + 𝑌 ) ) ↔ 𝑝 ∈ ( 𝑋 + 𝑌 ) ) ) |
| 25 | 15 24 | bitr3d | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( ( ( 𝑝 ∈ ( 𝑋 + 𝑌 ) ∨ 𝑝 ∈ ( 𝑋 + 𝑌 ) ) ∨ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ∃ 𝑞 ∈ ( 𝑋 + 𝑌 ) ∃ 𝑟 ∈ ( 𝑋 + 𝑌 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) ) ↔ 𝑝 ∈ ( 𝑋 + 𝑌 ) ) ) |
| 26 | 11 25 | imbitrid | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ∃ 𝑞 ∈ ( 𝑋 + 𝑌 ) ∃ 𝑟 ∈ ( 𝑋 + 𝑌 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) → 𝑝 ∈ ( 𝑋 + 𝑌 ) ) ) |
| 27 | 26 | expd | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) → ( ∃ 𝑞 ∈ ( 𝑋 + 𝑌 ) ∃ 𝑟 ∈ ( 𝑋 + 𝑌 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) → 𝑝 ∈ ( 𝑋 + 𝑌 ) ) ) ) |
| 28 | 27 | ralrimiv | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ∀ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ( ∃ 𝑞 ∈ ( 𝑋 + 𝑌 ) ∃ 𝑟 ∈ ( 𝑋 + 𝑌 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) → 𝑝 ∈ ( 𝑋 + 𝑌 ) ) ) |
| 29 | 12 13 4 1 | ispsubsp2 | ⊢ ( 𝐾 ∈ HL → ( ( 𝑋 + 𝑌 ) ∈ 𝑆 ↔ ( ( 𝑋 + 𝑌 ) ⊆ ( Atoms ‘ 𝐾 ) ∧ ∀ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ( ∃ 𝑞 ∈ ( 𝑋 + 𝑌 ) ∃ 𝑟 ∈ ( 𝑋 + 𝑌 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) → 𝑝 ∈ ( 𝑋 + 𝑌 ) ) ) ) ) |
| 30 | 29 | 3ad2ant1 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( ( 𝑋 + 𝑌 ) ∈ 𝑆 ↔ ( ( 𝑋 + 𝑌 ) ⊆ ( Atoms ‘ 𝐾 ) ∧ ∀ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ( ∃ 𝑞 ∈ ( 𝑋 + 𝑌 ) ∃ 𝑟 ∈ ( 𝑋 + 𝑌 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) → 𝑝 ∈ ( 𝑋 + 𝑌 ) ) ) ) ) |
| 31 | 10 28 30 | mpbir2and | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( 𝑋 + 𝑌 ) ∈ 𝑆 ) |