This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Projective subspace sum is idempotent. Part of Lemma 16.2 of MaedaMaeda p. 68. (Contributed by NM, 13-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | paddidm.s | ⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) | |
| paddidm.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | ||
| Assertion | paddidm | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝑆 ) → ( 𝑋 + 𝑋 ) = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | paddidm.s | ⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) | |
| 2 | paddidm.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | |
| 3 | simpl | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝑆 ) → 𝐾 ∈ 𝐵 ) | |
| 4 | eqid | ⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) | |
| 5 | 4 1 | psubssat | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ⊆ ( Atoms ‘ 𝐾 ) ) |
| 6 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
| 7 | eqid | ⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) | |
| 8 | 6 7 4 2 | elpadd | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ ( Atoms ‘ 𝐾 ) ∧ 𝑋 ⊆ ( Atoms ‘ 𝐾 ) ) → ( 𝑝 ∈ ( 𝑋 + 𝑋 ) ↔ ( ( 𝑝 ∈ 𝑋 ∨ 𝑝 ∈ 𝑋 ) ∨ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑋 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) ) ) ) |
| 9 | 3 5 5 8 | syl3anc | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝑆 ) → ( 𝑝 ∈ ( 𝑋 + 𝑋 ) ↔ ( ( 𝑝 ∈ 𝑋 ∨ 𝑝 ∈ 𝑋 ) ∨ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑋 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) ) ) ) |
| 10 | pm1.2 | ⊢ ( ( 𝑝 ∈ 𝑋 ∨ 𝑝 ∈ 𝑋 ) → 𝑝 ∈ 𝑋 ) | |
| 11 | 10 | a1i | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝑆 ) → ( ( 𝑝 ∈ 𝑋 ∨ 𝑝 ∈ 𝑋 ) → 𝑝 ∈ 𝑋 ) ) |
| 12 | 6 7 4 1 | psubspi | ⊢ ( ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝑆 ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑋 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) → 𝑝 ∈ 𝑋 ) |
| 13 | 12 | 3exp1 | ⊢ ( 𝐾 ∈ 𝐵 → ( 𝑋 ∈ 𝑆 → ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) → ( ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑋 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) → 𝑝 ∈ 𝑋 ) ) ) ) |
| 14 | 13 | imp4b | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝑆 ) → ( ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑋 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) → 𝑝 ∈ 𝑋 ) ) |
| 15 | 11 14 | jaod | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝑆 ) → ( ( ( 𝑝 ∈ 𝑋 ∨ 𝑝 ∈ 𝑋 ) ∨ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑋 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) ) → 𝑝 ∈ 𝑋 ) ) |
| 16 | 9 15 | sylbid | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝑆 ) → ( 𝑝 ∈ ( 𝑋 + 𝑋 ) → 𝑝 ∈ 𝑋 ) ) |
| 17 | 16 | ssrdv | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝑆 ) → ( 𝑋 + 𝑋 ) ⊆ 𝑋 ) |
| 18 | 4 2 | sspadd1 | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ ( Atoms ‘ 𝐾 ) ∧ 𝑋 ⊆ ( Atoms ‘ 𝐾 ) ) → 𝑋 ⊆ ( 𝑋 + 𝑋 ) ) |
| 19 | 3 5 5 18 | syl3anc | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ⊆ ( 𝑋 + 𝑋 ) ) |
| 20 | 17 19 | eqssd | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝑆 ) → ( 𝑋 + 𝑋 ) = 𝑋 ) |