This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a projective subspace". (Contributed by NM, 13-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psubspset.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| psubspset.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| psubspset.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| psubspset.s | ⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) | ||
| Assertion | ispsubsp2 | ⊢ ( 𝐾 ∈ 𝐷 → ( 𝑋 ∈ 𝑆 ↔ ( 𝑋 ⊆ 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑋 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) → 𝑝 ∈ 𝑋 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psubspset.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 2 | psubspset.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | psubspset.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 4 | psubspset.s | ⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) | |
| 5 | 1 2 3 4 | ispsubsp | ⊢ ( 𝐾 ∈ 𝐷 → ( 𝑋 ∈ 𝑆 ↔ ( 𝑋 ⊆ 𝐴 ∧ ∀ 𝑞 ∈ 𝑋 ∀ 𝑟 ∈ 𝑋 ∀ 𝑝 ∈ 𝐴 ( 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) → 𝑝 ∈ 𝑋 ) ) ) ) |
| 6 | ralcom | ⊢ ( ∀ 𝑟 ∈ 𝑋 ∀ 𝑝 ∈ 𝐴 ( 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) → 𝑝 ∈ 𝑋 ) ↔ ∀ 𝑝 ∈ 𝐴 ∀ 𝑟 ∈ 𝑋 ( 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) → 𝑝 ∈ 𝑋 ) ) | |
| 7 | r19.23v | ⊢ ( ∀ 𝑟 ∈ 𝑋 ( 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) → 𝑝 ∈ 𝑋 ) ↔ ( ∃ 𝑟 ∈ 𝑋 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) → 𝑝 ∈ 𝑋 ) ) | |
| 8 | 7 | ralbii | ⊢ ( ∀ 𝑝 ∈ 𝐴 ∀ 𝑟 ∈ 𝑋 ( 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) → 𝑝 ∈ 𝑋 ) ↔ ∀ 𝑝 ∈ 𝐴 ( ∃ 𝑟 ∈ 𝑋 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) → 𝑝 ∈ 𝑋 ) ) |
| 9 | 6 8 | bitri | ⊢ ( ∀ 𝑟 ∈ 𝑋 ∀ 𝑝 ∈ 𝐴 ( 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) → 𝑝 ∈ 𝑋 ) ↔ ∀ 𝑝 ∈ 𝐴 ( ∃ 𝑟 ∈ 𝑋 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) → 𝑝 ∈ 𝑋 ) ) |
| 10 | 9 | ralbii | ⊢ ( ∀ 𝑞 ∈ 𝑋 ∀ 𝑟 ∈ 𝑋 ∀ 𝑝 ∈ 𝐴 ( 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) → 𝑝 ∈ 𝑋 ) ↔ ∀ 𝑞 ∈ 𝑋 ∀ 𝑝 ∈ 𝐴 ( ∃ 𝑟 ∈ 𝑋 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) → 𝑝 ∈ 𝑋 ) ) |
| 11 | ralcom | ⊢ ( ∀ 𝑞 ∈ 𝑋 ∀ 𝑝 ∈ 𝐴 ( ∃ 𝑟 ∈ 𝑋 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) → 𝑝 ∈ 𝑋 ) ↔ ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ 𝑋 ( ∃ 𝑟 ∈ 𝑋 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) → 𝑝 ∈ 𝑋 ) ) | |
| 12 | r19.23v | ⊢ ( ∀ 𝑞 ∈ 𝑋 ( ∃ 𝑟 ∈ 𝑋 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) → 𝑝 ∈ 𝑋 ) ↔ ( ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑋 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) → 𝑝 ∈ 𝑋 ) ) | |
| 13 | 12 | ralbii | ⊢ ( ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ 𝑋 ( ∃ 𝑟 ∈ 𝑋 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) → 𝑝 ∈ 𝑋 ) ↔ ∀ 𝑝 ∈ 𝐴 ( ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑋 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) → 𝑝 ∈ 𝑋 ) ) |
| 14 | 11 13 | bitri | ⊢ ( ∀ 𝑞 ∈ 𝑋 ∀ 𝑝 ∈ 𝐴 ( ∃ 𝑟 ∈ 𝑋 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) → 𝑝 ∈ 𝑋 ) ↔ ∀ 𝑝 ∈ 𝐴 ( ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑋 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) → 𝑝 ∈ 𝑋 ) ) |
| 15 | 10 14 | bitri | ⊢ ( ∀ 𝑞 ∈ 𝑋 ∀ 𝑟 ∈ 𝑋 ∀ 𝑝 ∈ 𝐴 ( 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) → 𝑝 ∈ 𝑋 ) ↔ ∀ 𝑝 ∈ 𝐴 ( ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑋 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) → 𝑝 ∈ 𝑋 ) ) |
| 16 | 15 | a1i | ⊢ ( 𝐾 ∈ 𝐷 → ( ∀ 𝑞 ∈ 𝑋 ∀ 𝑟 ∈ 𝑋 ∀ 𝑝 ∈ 𝐴 ( 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) → 𝑝 ∈ 𝑋 ) ↔ ∀ 𝑝 ∈ 𝐴 ( ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑋 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) → 𝑝 ∈ 𝑋 ) ) ) |
| 17 | 16 | anbi2d | ⊢ ( 𝐾 ∈ 𝐷 → ( ( 𝑋 ⊆ 𝐴 ∧ ∀ 𝑞 ∈ 𝑋 ∀ 𝑟 ∈ 𝑋 ∀ 𝑝 ∈ 𝐴 ( 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) → 𝑝 ∈ 𝑋 ) ) ↔ ( 𝑋 ⊆ 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑋 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) → 𝑝 ∈ 𝑋 ) ) ) ) |
| 18 | 5 17 | bitrd | ⊢ ( 𝐾 ∈ 𝐷 → ( 𝑋 ∈ 𝑆 ↔ ( 𝑋 ⊆ 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑋 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) → 𝑝 ∈ 𝑋 ) ) ) ) |