This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Member of a projective subspace sum. (Contributed by NM, 29-Dec-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | paddfval.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| paddfval.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| paddfval.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| paddfval.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | ||
| Assertion | elpadd | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑆 ∈ ( 𝑋 + 𝑌 ) ↔ ( ( 𝑆 ∈ 𝑋 ∨ 𝑆 ∈ 𝑌 ) ∨ ( 𝑆 ∈ 𝐴 ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | paddfval.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 2 | paddfval.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | paddfval.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 4 | paddfval.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | |
| 5 | 1 2 3 4 | paddval | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑋 + 𝑌 ) = ( ( 𝑋 ∪ 𝑌 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) |
| 6 | 5 | eleq2d | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑆 ∈ ( 𝑋 + 𝑌 ) ↔ 𝑆 ∈ ( ( 𝑋 ∪ 𝑌 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) ) |
| 7 | elun | ⊢ ( 𝑆 ∈ ( ( 𝑋 ∪ 𝑌 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ↔ ( 𝑆 ∈ ( 𝑋 ∪ 𝑌 ) ∨ 𝑆 ∈ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) | |
| 8 | elun | ⊢ ( 𝑆 ∈ ( 𝑋 ∪ 𝑌 ) ↔ ( 𝑆 ∈ 𝑋 ∨ 𝑆 ∈ 𝑌 ) ) | |
| 9 | breq1 | ⊢ ( 𝑝 = 𝑆 → ( 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) ↔ 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) ) | |
| 10 | 9 | 2rexbidv | ⊢ ( 𝑝 = 𝑆 → ( ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) ↔ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) ) |
| 11 | 10 | elrab | ⊢ ( 𝑆 ∈ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ↔ ( 𝑆 ∈ 𝐴 ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) ) |
| 12 | 8 11 | orbi12i | ⊢ ( ( 𝑆 ∈ ( 𝑋 ∪ 𝑌 ) ∨ 𝑆 ∈ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ↔ ( ( 𝑆 ∈ 𝑋 ∨ 𝑆 ∈ 𝑌 ) ∨ ( 𝑆 ∈ 𝐴 ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) ) ) |
| 13 | 7 12 | bitri | ⊢ ( 𝑆 ∈ ( ( 𝑋 ∪ 𝑌 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ↔ ( ( 𝑆 ∈ 𝑋 ∨ 𝑆 ∈ 𝑌 ) ∨ ( 𝑆 ∈ 𝐴 ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) ) ) |
| 14 | 6 13 | bitrdi | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑆 ∈ ( 𝑋 + 𝑌 ) ↔ ( ( 𝑆 ∈ 𝑋 ∨ 𝑆 ∈ 𝑌 ) ∨ ( 𝑆 ∈ 𝐴 ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) ) ) ) |