This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rearrangement of 4 terms in a projective subspace sum. (Contributed by NM, 14-Jan-2012) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | paddass.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| paddass.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | ||
| Assertion | padd4N | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑍 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) ) → ( ( 𝑋 + 𝑌 ) + ( 𝑍 + 𝑊 ) ) = ( ( 𝑋 + 𝑍 ) + ( 𝑌 + 𝑊 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | paddass.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 2 | paddass.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | |
| 3 | simp1 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑍 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) ) → 𝐾 ∈ HL ) | |
| 4 | simp2r | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑍 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) ) → 𝑌 ⊆ 𝐴 ) | |
| 5 | simp3l | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑍 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) ) → 𝑍 ⊆ 𝐴 ) | |
| 6 | simp3r | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑍 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) ) → 𝑊 ⊆ 𝐴 ) | |
| 7 | 1 2 | padd12N | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) ) → ( 𝑌 + ( 𝑍 + 𝑊 ) ) = ( 𝑍 + ( 𝑌 + 𝑊 ) ) ) |
| 8 | 3 4 5 6 7 | syl13anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑍 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) ) → ( 𝑌 + ( 𝑍 + 𝑊 ) ) = ( 𝑍 + ( 𝑌 + 𝑊 ) ) ) |
| 9 | 8 | oveq2d | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑍 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) ) → ( 𝑋 + ( 𝑌 + ( 𝑍 + 𝑊 ) ) ) = ( 𝑋 + ( 𝑍 + ( 𝑌 + 𝑊 ) ) ) ) |
| 10 | simp2l | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑍 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) ) → 𝑋 ⊆ 𝐴 ) | |
| 11 | 1 2 | paddssat | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑍 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) → ( 𝑍 + 𝑊 ) ⊆ 𝐴 ) |
| 12 | 3 5 6 11 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑍 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) ) → ( 𝑍 + 𝑊 ) ⊆ 𝐴 ) |
| 13 | 1 2 | paddass | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ ( 𝑍 + 𝑊 ) ⊆ 𝐴 ) ) → ( ( 𝑋 + 𝑌 ) + ( 𝑍 + 𝑊 ) ) = ( 𝑋 + ( 𝑌 + ( 𝑍 + 𝑊 ) ) ) ) |
| 14 | 3 10 4 12 13 | syl13anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑍 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) ) → ( ( 𝑋 + 𝑌 ) + ( 𝑍 + 𝑊 ) ) = ( 𝑋 + ( 𝑌 + ( 𝑍 + 𝑊 ) ) ) ) |
| 15 | 1 2 | paddssat | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) → ( 𝑌 + 𝑊 ) ⊆ 𝐴 ) |
| 16 | 3 4 6 15 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑍 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) ) → ( 𝑌 + 𝑊 ) ⊆ 𝐴 ) |
| 17 | 1 2 | paddass | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ∧ ( 𝑌 + 𝑊 ) ⊆ 𝐴 ) ) → ( ( 𝑋 + 𝑍 ) + ( 𝑌 + 𝑊 ) ) = ( 𝑋 + ( 𝑍 + ( 𝑌 + 𝑊 ) ) ) ) |
| 18 | 3 10 5 16 17 | syl13anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑍 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) ) → ( ( 𝑋 + 𝑍 ) + ( 𝑌 + 𝑊 ) ) = ( 𝑋 + ( 𝑍 + ( 𝑌 + 𝑊 ) ) ) ) |
| 19 | 9 14 18 | 3eqtr4d | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑍 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) ) → ( ( 𝑋 + 𝑌 ) + ( 𝑍 + 𝑊 ) ) = ( ( 𝑋 + 𝑍 ) + ( 𝑌 + 𝑊 ) ) ) |