This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative/associative law for projective subspace sum. (Contributed by NM, 14-Jan-2012) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | paddass.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| paddass.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | ||
| Assertion | padd12N | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( 𝑋 + ( 𝑌 + 𝑍 ) ) = ( 𝑌 + ( 𝑋 + 𝑍 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | paddass.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 2 | paddass.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | |
| 3 | hllat | ⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → 𝐾 ∈ Lat ) |
| 5 | simpr1 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → 𝑋 ⊆ 𝐴 ) | |
| 6 | simpr2 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → 𝑌 ⊆ 𝐴 ) | |
| 7 | 1 2 | paddcom | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |
| 8 | 4 5 6 7 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |
| 9 | 8 | oveq1d | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( ( 𝑌 + 𝑋 ) + 𝑍 ) ) |
| 10 | 1 2 | paddass | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( 𝑋 + ( 𝑌 + 𝑍 ) ) ) |
| 11 | simpl | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → 𝐾 ∈ HL ) | |
| 12 | simpr3 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → 𝑍 ⊆ 𝐴 ) | |
| 13 | 1 2 | paddass | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( ( 𝑌 + 𝑋 ) + 𝑍 ) = ( 𝑌 + ( 𝑋 + 𝑍 ) ) ) |
| 14 | 11 6 5 12 13 | syl13anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( ( 𝑌 + 𝑋 ) + 𝑍 ) = ( 𝑌 + ( 𝑋 + 𝑍 ) ) ) |
| 15 | 9 10 14 | 3eqtr3d | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( 𝑋 + ( 𝑌 + 𝑍 ) ) = ( 𝑌 + ( 𝑋 + 𝑍 ) ) ) |