This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Projective subspace sum is associative. Equation 16.2.1 of MaedaMaeda p. 68. In our version, the subspaces do not have to be nonempty. (Contributed by NM, 29-Dec-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | paddass.a | |- A = ( Atoms ` K ) |
|
| paddass.p | |- .+ = ( +P ` K ) |
||
| Assertion | paddass | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( ( X .+ Y ) .+ Z ) = ( X .+ ( Y .+ Z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | paddass.a | |- A = ( Atoms ` K ) |
|
| 2 | paddass.p | |- .+ = ( +P ` K ) |
|
| 3 | simpl | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> K e. HL ) |
|
| 4 | simpr3 | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> Z C_ A ) |
|
| 5 | simpr2 | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> Y C_ A ) |
|
| 6 | simpr1 | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> X C_ A ) |
|
| 7 | 1 2 | paddasslem18 | |- ( ( K e. HL /\ ( Z C_ A /\ Y C_ A /\ X C_ A ) ) -> ( Z .+ ( Y .+ X ) ) C_ ( ( Z .+ Y ) .+ X ) ) |
| 8 | 3 4 5 6 7 | syl13anc | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( Z .+ ( Y .+ X ) ) C_ ( ( Z .+ Y ) .+ X ) ) |
| 9 | hllat | |- ( K e. HL -> K e. Lat ) |
|
| 10 | 1 2 | paddcom | |- ( ( K e. Lat /\ X C_ A /\ Y C_ A ) -> ( X .+ Y ) = ( Y .+ X ) ) |
| 11 | 9 10 | syl3an1 | |- ( ( K e. HL /\ X C_ A /\ Y C_ A ) -> ( X .+ Y ) = ( Y .+ X ) ) |
| 12 | 11 | 3adant3r3 | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( X .+ Y ) = ( Y .+ X ) ) |
| 13 | 12 | oveq1d | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( ( X .+ Y ) .+ Z ) = ( ( Y .+ X ) .+ Z ) ) |
| 14 | 1 2 | paddssat | |- ( ( K e. HL /\ Y C_ A /\ X C_ A ) -> ( Y .+ X ) C_ A ) |
| 15 | 3 5 6 14 | syl3anc | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( Y .+ X ) C_ A ) |
| 16 | 1 2 | paddcom | |- ( ( K e. Lat /\ ( Y .+ X ) C_ A /\ Z C_ A ) -> ( ( Y .+ X ) .+ Z ) = ( Z .+ ( Y .+ X ) ) ) |
| 17 | 9 16 | syl3an1 | |- ( ( K e. HL /\ ( Y .+ X ) C_ A /\ Z C_ A ) -> ( ( Y .+ X ) .+ Z ) = ( Z .+ ( Y .+ X ) ) ) |
| 18 | 3 15 4 17 | syl3anc | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( ( Y .+ X ) .+ Z ) = ( Z .+ ( Y .+ X ) ) ) |
| 19 | 13 18 | eqtrd | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( ( X .+ Y ) .+ Z ) = ( Z .+ ( Y .+ X ) ) ) |
| 20 | 1 2 | paddcom | |- ( ( K e. Lat /\ Y C_ A /\ Z C_ A ) -> ( Y .+ Z ) = ( Z .+ Y ) ) |
| 21 | 9 20 | syl3an1 | |- ( ( K e. HL /\ Y C_ A /\ Z C_ A ) -> ( Y .+ Z ) = ( Z .+ Y ) ) |
| 22 | 21 | 3adant3r1 | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( Y .+ Z ) = ( Z .+ Y ) ) |
| 23 | 22 | oveq2d | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( X .+ ( Y .+ Z ) ) = ( X .+ ( Z .+ Y ) ) ) |
| 24 | 1 2 | paddssat | |- ( ( K e. HL /\ Z C_ A /\ Y C_ A ) -> ( Z .+ Y ) C_ A ) |
| 25 | 3 4 5 24 | syl3anc | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( Z .+ Y ) C_ A ) |
| 26 | 1 2 | paddcom | |- ( ( K e. Lat /\ X C_ A /\ ( Z .+ Y ) C_ A ) -> ( X .+ ( Z .+ Y ) ) = ( ( Z .+ Y ) .+ X ) ) |
| 27 | 9 26 | syl3an1 | |- ( ( K e. HL /\ X C_ A /\ ( Z .+ Y ) C_ A ) -> ( X .+ ( Z .+ Y ) ) = ( ( Z .+ Y ) .+ X ) ) |
| 28 | 3 6 25 27 | syl3anc | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( X .+ ( Z .+ Y ) ) = ( ( Z .+ Y ) .+ X ) ) |
| 29 | 23 28 | eqtrd | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( X .+ ( Y .+ Z ) ) = ( ( Z .+ Y ) .+ X ) ) |
| 30 | 8 19 29 | 3sstr4d | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( ( X .+ Y ) .+ Z ) C_ ( X .+ ( Y .+ Z ) ) ) |
| 31 | 1 2 | paddasslem18 | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( X .+ ( Y .+ Z ) ) C_ ( ( X .+ Y ) .+ Z ) ) |
| 32 | 30 31 | eqssd | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( ( X .+ Y ) .+ Z ) = ( X .+ ( Y .+ Z ) ) ) |