This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for paddass . Combine paddasslem16 and paddasslem17 . (Contributed by NM, 12-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | paddass.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| paddass.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | ||
| Assertion | paddasslem18 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( 𝑋 + ( 𝑌 + 𝑍 ) ) ⊆ ( ( 𝑋 + 𝑌 ) + 𝑍 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | paddass.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 2 | paddass.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | |
| 3 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
| 4 | eqid | ⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) | |
| 5 | 3 4 1 2 | paddasslem16 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ ( ( 𝑋 ≠ ∅ ∧ ( 𝑌 + 𝑍 ) ≠ ∅ ) ∧ ( 𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅ ) ) ) → ( 𝑋 + ( 𝑌 + 𝑍 ) ) ⊆ ( ( 𝑋 + 𝑌 ) + 𝑍 ) ) |
| 6 | 5 | 3expa | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) ∧ ( ( 𝑋 ≠ ∅ ∧ ( 𝑌 + 𝑍 ) ≠ ∅ ) ∧ ( 𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅ ) ) ) → ( 𝑋 + ( 𝑌 + 𝑍 ) ) ⊆ ( ( 𝑋 + 𝑌 ) + 𝑍 ) ) |
| 7 | 1 2 | paddasslem17 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ ¬ ( ( 𝑋 ≠ ∅ ∧ ( 𝑌 + 𝑍 ) ≠ ∅ ) ∧ ( 𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅ ) ) ) → ( 𝑋 + ( 𝑌 + 𝑍 ) ) ⊆ ( ( 𝑋 + 𝑌 ) + 𝑍 ) ) |
| 8 | 7 | 3expa | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) ∧ ¬ ( ( 𝑋 ≠ ∅ ∧ ( 𝑌 + 𝑍 ) ≠ ∅ ) ∧ ( 𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅ ) ) ) → ( 𝑋 + ( 𝑌 + 𝑍 ) ) ⊆ ( ( 𝑋 + 𝑌 ) + 𝑍 ) ) |
| 9 | 6 8 | pm2.61dan | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( 𝑋 + ( 𝑌 + 𝑍 ) ) ⊆ ( ( 𝑋 + 𝑌 ) + 𝑍 ) ) |