This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordinal equal to its union contains the successor of each of its members. (Contributed by NM, 1-Feb-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordunisuc2 | ⊢ ( Ord 𝐴 → ( 𝐴 = ∪ 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orduninsuc | ⊢ ( Ord 𝐴 → ( 𝐴 = ∪ 𝐴 ↔ ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) | |
| 2 | ralnex | ⊢ ( ∀ 𝑥 ∈ On ¬ 𝐴 = suc 𝑥 ↔ ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) | |
| 3 | onsuc | ⊢ ( 𝑥 ∈ On → suc 𝑥 ∈ On ) | |
| 4 | eloni | ⊢ ( suc 𝑥 ∈ On → Ord suc 𝑥 ) | |
| 5 | 3 4 | syl | ⊢ ( 𝑥 ∈ On → Ord suc 𝑥 ) |
| 6 | ordtri3 | ⊢ ( ( Ord 𝐴 ∧ Ord suc 𝑥 ) → ( 𝐴 = suc 𝑥 ↔ ¬ ( 𝐴 ∈ suc 𝑥 ∨ suc 𝑥 ∈ 𝐴 ) ) ) | |
| 7 | 5 6 | sylan2 | ⊢ ( ( Ord 𝐴 ∧ 𝑥 ∈ On ) → ( 𝐴 = suc 𝑥 ↔ ¬ ( 𝐴 ∈ suc 𝑥 ∨ suc 𝑥 ∈ 𝐴 ) ) ) |
| 8 | 7 | con2bid | ⊢ ( ( Ord 𝐴 ∧ 𝑥 ∈ On ) → ( ( 𝐴 ∈ suc 𝑥 ∨ suc 𝑥 ∈ 𝐴 ) ↔ ¬ 𝐴 = suc 𝑥 ) ) |
| 9 | onnbtwn | ⊢ ( 𝑥 ∈ On → ¬ ( 𝑥 ∈ 𝐴 ∧ 𝐴 ∈ suc 𝑥 ) ) | |
| 10 | imnan | ⊢ ( ( 𝑥 ∈ 𝐴 → ¬ 𝐴 ∈ suc 𝑥 ) ↔ ¬ ( 𝑥 ∈ 𝐴 ∧ 𝐴 ∈ suc 𝑥 ) ) | |
| 11 | 9 10 | sylibr | ⊢ ( 𝑥 ∈ On → ( 𝑥 ∈ 𝐴 → ¬ 𝐴 ∈ suc 𝑥 ) ) |
| 12 | 11 | con2d | ⊢ ( 𝑥 ∈ On → ( 𝐴 ∈ suc 𝑥 → ¬ 𝑥 ∈ 𝐴 ) ) |
| 13 | pm2.21 | ⊢ ( ¬ 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴 ) ) | |
| 14 | 12 13 | syl6 | ⊢ ( 𝑥 ∈ On → ( 𝐴 ∈ suc 𝑥 → ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴 ) ) ) |
| 15 | 14 | adantl | ⊢ ( ( Ord 𝐴 ∧ 𝑥 ∈ On ) → ( 𝐴 ∈ suc 𝑥 → ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴 ) ) ) |
| 16 | ax-1 | ⊢ ( suc 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴 ) ) | |
| 17 | 16 | a1i | ⊢ ( ( Ord 𝐴 ∧ 𝑥 ∈ On ) → ( suc 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴 ) ) ) |
| 18 | 15 17 | jaod | ⊢ ( ( Ord 𝐴 ∧ 𝑥 ∈ On ) → ( ( 𝐴 ∈ suc 𝑥 ∨ suc 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴 ) ) ) |
| 19 | eloni | ⊢ ( 𝑥 ∈ On → Ord 𝑥 ) | |
| 20 | ordtri2or | ⊢ ( ( Ord 𝑥 ∧ Ord 𝐴 ) → ( 𝑥 ∈ 𝐴 ∨ 𝐴 ⊆ 𝑥 ) ) | |
| 21 | 19 20 | sylan | ⊢ ( ( 𝑥 ∈ On ∧ Ord 𝐴 ) → ( 𝑥 ∈ 𝐴 ∨ 𝐴 ⊆ 𝑥 ) ) |
| 22 | 21 | ancoms | ⊢ ( ( Ord 𝐴 ∧ 𝑥 ∈ On ) → ( 𝑥 ∈ 𝐴 ∨ 𝐴 ⊆ 𝑥 ) ) |
| 23 | 22 | orcomd | ⊢ ( ( Ord 𝐴 ∧ 𝑥 ∈ On ) → ( 𝐴 ⊆ 𝑥 ∨ 𝑥 ∈ 𝐴 ) ) |
| 24 | 23 | adantr | ⊢ ( ( ( Ord 𝐴 ∧ 𝑥 ∈ On ) ∧ ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴 ) ) → ( 𝐴 ⊆ 𝑥 ∨ 𝑥 ∈ 𝐴 ) ) |
| 25 | ordsssuc2 | ⊢ ( ( Ord 𝐴 ∧ 𝑥 ∈ On ) → ( 𝐴 ⊆ 𝑥 ↔ 𝐴 ∈ suc 𝑥 ) ) | |
| 26 | 25 | biimpd | ⊢ ( ( Ord 𝐴 ∧ 𝑥 ∈ On ) → ( 𝐴 ⊆ 𝑥 → 𝐴 ∈ suc 𝑥 ) ) |
| 27 | 26 | adantr | ⊢ ( ( ( Ord 𝐴 ∧ 𝑥 ∈ On ) ∧ ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴 ) ) → ( 𝐴 ⊆ 𝑥 → 𝐴 ∈ suc 𝑥 ) ) |
| 28 | simpr | ⊢ ( ( ( Ord 𝐴 ∧ 𝑥 ∈ On ) ∧ ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴 ) ) → ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴 ) ) | |
| 29 | 27 28 | orim12d | ⊢ ( ( ( Ord 𝐴 ∧ 𝑥 ∈ On ) ∧ ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴 ) ) → ( ( 𝐴 ⊆ 𝑥 ∨ 𝑥 ∈ 𝐴 ) → ( 𝐴 ∈ suc 𝑥 ∨ suc 𝑥 ∈ 𝐴 ) ) ) |
| 30 | 24 29 | mpd | ⊢ ( ( ( Ord 𝐴 ∧ 𝑥 ∈ On ) ∧ ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴 ) ) → ( 𝐴 ∈ suc 𝑥 ∨ suc 𝑥 ∈ 𝐴 ) ) |
| 31 | 30 | ex | ⊢ ( ( Ord 𝐴 ∧ 𝑥 ∈ On ) → ( ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴 ) → ( 𝐴 ∈ suc 𝑥 ∨ suc 𝑥 ∈ 𝐴 ) ) ) |
| 32 | 18 31 | impbid | ⊢ ( ( Ord 𝐴 ∧ 𝑥 ∈ On ) → ( ( 𝐴 ∈ suc 𝑥 ∨ suc 𝑥 ∈ 𝐴 ) ↔ ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴 ) ) ) |
| 33 | 8 32 | bitr3d | ⊢ ( ( Ord 𝐴 ∧ 𝑥 ∈ On ) → ( ¬ 𝐴 = suc 𝑥 ↔ ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴 ) ) ) |
| 34 | 33 | pm5.74da | ⊢ ( Ord 𝐴 → ( ( 𝑥 ∈ On → ¬ 𝐴 = suc 𝑥 ) ↔ ( 𝑥 ∈ On → ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴 ) ) ) ) |
| 35 | impexp | ⊢ ( ( ( 𝑥 ∈ On ∧ 𝑥 ∈ 𝐴 ) → suc 𝑥 ∈ 𝐴 ) ↔ ( 𝑥 ∈ On → ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴 ) ) ) | |
| 36 | simpr | ⊢ ( ( 𝑥 ∈ On ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) | |
| 37 | ordelon | ⊢ ( ( Ord 𝐴 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ On ) | |
| 38 | 37 | ex | ⊢ ( Ord 𝐴 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ On ) ) |
| 39 | 38 | ancrd | ⊢ ( Ord 𝐴 → ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ On ∧ 𝑥 ∈ 𝐴 ) ) ) |
| 40 | 36 39 | impbid2 | ⊢ ( Ord 𝐴 → ( ( 𝑥 ∈ On ∧ 𝑥 ∈ 𝐴 ) ↔ 𝑥 ∈ 𝐴 ) ) |
| 41 | 40 | imbi1d | ⊢ ( Ord 𝐴 → ( ( ( 𝑥 ∈ On ∧ 𝑥 ∈ 𝐴 ) → suc 𝑥 ∈ 𝐴 ) ↔ ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴 ) ) ) |
| 42 | 35 41 | bitr3id | ⊢ ( Ord 𝐴 → ( ( 𝑥 ∈ On → ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴 ) ) ↔ ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴 ) ) ) |
| 43 | 34 42 | bitrd | ⊢ ( Ord 𝐴 → ( ( 𝑥 ∈ On → ¬ 𝐴 = suc 𝑥 ) ↔ ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴 ) ) ) |
| 44 | 43 | ralbidv2 | ⊢ ( Ord 𝐴 → ( ∀ 𝑥 ∈ On ¬ 𝐴 = suc 𝑥 ↔ ∀ 𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 ) ) |
| 45 | 2 44 | bitr3id | ⊢ ( Ord 𝐴 → ( ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ↔ ∀ 𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 ) ) |
| 46 | 1 45 | bitrd | ⊢ ( Ord 𝐴 → ( 𝐴 = ∪ 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 ) ) |