This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordinal subset of an ordinal number belongs to its successor. (Contributed by NM, 1-Feb-2005) (Proof shortened by Andrew Salmon, 12-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordsssuc2 | ⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elong | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ On ↔ Ord 𝐴 ) ) | |
| 2 | 1 | biimprd | ⊢ ( 𝐴 ∈ V → ( Ord 𝐴 → 𝐴 ∈ On ) ) |
| 3 | 2 | anim1d | ⊢ ( 𝐴 ∈ V → ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) → ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ) |
| 4 | onsssuc | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵 ) ) | |
| 5 | 3 4 | syl6 | ⊢ ( 𝐴 ∈ V → ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵 ) ) ) |
| 6 | annim | ⊢ ( ( 𝐵 ∈ On ∧ ¬ 𝐴 ∈ V ) ↔ ¬ ( 𝐵 ∈ On → 𝐴 ∈ V ) ) | |
| 7 | ssexg | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ On ) → 𝐴 ∈ V ) | |
| 8 | 7 | ex | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐵 ∈ On → 𝐴 ∈ V ) ) |
| 9 | elex | ⊢ ( 𝐴 ∈ suc 𝐵 → 𝐴 ∈ V ) | |
| 10 | 9 | a1d | ⊢ ( 𝐴 ∈ suc 𝐵 → ( 𝐵 ∈ On → 𝐴 ∈ V ) ) |
| 11 | 8 10 | pm5.21ni | ⊢ ( ¬ ( 𝐵 ∈ On → 𝐴 ∈ V ) → ( 𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵 ) ) |
| 12 | 6 11 | sylbi | ⊢ ( ( 𝐵 ∈ On ∧ ¬ 𝐴 ∈ V ) → ( 𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵 ) ) |
| 13 | 12 | expcom | ⊢ ( ¬ 𝐴 ∈ V → ( 𝐵 ∈ On → ( 𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵 ) ) ) |
| 14 | 13 | adantld | ⊢ ( ¬ 𝐴 ∈ V → ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵 ) ) ) |
| 15 | 5 14 | pm2.61i | ⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵 ) ) |