This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordinal equal to its union contains the successor of each of its members. (Contributed by NM, 1-Feb-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordunisuc2 | |- ( Ord A -> ( A = U. A <-> A. x e. A suc x e. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orduninsuc | |- ( Ord A -> ( A = U. A <-> -. E. x e. On A = suc x ) ) |
|
| 2 | ralnex | |- ( A. x e. On -. A = suc x <-> -. E. x e. On A = suc x ) |
|
| 3 | onsuc | |- ( x e. On -> suc x e. On ) |
|
| 4 | eloni | |- ( suc x e. On -> Ord suc x ) |
|
| 5 | 3 4 | syl | |- ( x e. On -> Ord suc x ) |
| 6 | ordtri3 | |- ( ( Ord A /\ Ord suc x ) -> ( A = suc x <-> -. ( A e. suc x \/ suc x e. A ) ) ) |
|
| 7 | 5 6 | sylan2 | |- ( ( Ord A /\ x e. On ) -> ( A = suc x <-> -. ( A e. suc x \/ suc x e. A ) ) ) |
| 8 | 7 | con2bid | |- ( ( Ord A /\ x e. On ) -> ( ( A e. suc x \/ suc x e. A ) <-> -. A = suc x ) ) |
| 9 | onnbtwn | |- ( x e. On -> -. ( x e. A /\ A e. suc x ) ) |
|
| 10 | imnan | |- ( ( x e. A -> -. A e. suc x ) <-> -. ( x e. A /\ A e. suc x ) ) |
|
| 11 | 9 10 | sylibr | |- ( x e. On -> ( x e. A -> -. A e. suc x ) ) |
| 12 | 11 | con2d | |- ( x e. On -> ( A e. suc x -> -. x e. A ) ) |
| 13 | pm2.21 | |- ( -. x e. A -> ( x e. A -> suc x e. A ) ) |
|
| 14 | 12 13 | syl6 | |- ( x e. On -> ( A e. suc x -> ( x e. A -> suc x e. A ) ) ) |
| 15 | 14 | adantl | |- ( ( Ord A /\ x e. On ) -> ( A e. suc x -> ( x e. A -> suc x e. A ) ) ) |
| 16 | ax-1 | |- ( suc x e. A -> ( x e. A -> suc x e. A ) ) |
|
| 17 | 16 | a1i | |- ( ( Ord A /\ x e. On ) -> ( suc x e. A -> ( x e. A -> suc x e. A ) ) ) |
| 18 | 15 17 | jaod | |- ( ( Ord A /\ x e. On ) -> ( ( A e. suc x \/ suc x e. A ) -> ( x e. A -> suc x e. A ) ) ) |
| 19 | eloni | |- ( x e. On -> Ord x ) |
|
| 20 | ordtri2or | |- ( ( Ord x /\ Ord A ) -> ( x e. A \/ A C_ x ) ) |
|
| 21 | 19 20 | sylan | |- ( ( x e. On /\ Ord A ) -> ( x e. A \/ A C_ x ) ) |
| 22 | 21 | ancoms | |- ( ( Ord A /\ x e. On ) -> ( x e. A \/ A C_ x ) ) |
| 23 | 22 | orcomd | |- ( ( Ord A /\ x e. On ) -> ( A C_ x \/ x e. A ) ) |
| 24 | 23 | adantr | |- ( ( ( Ord A /\ x e. On ) /\ ( x e. A -> suc x e. A ) ) -> ( A C_ x \/ x e. A ) ) |
| 25 | ordsssuc2 | |- ( ( Ord A /\ x e. On ) -> ( A C_ x <-> A e. suc x ) ) |
|
| 26 | 25 | biimpd | |- ( ( Ord A /\ x e. On ) -> ( A C_ x -> A e. suc x ) ) |
| 27 | 26 | adantr | |- ( ( ( Ord A /\ x e. On ) /\ ( x e. A -> suc x e. A ) ) -> ( A C_ x -> A e. suc x ) ) |
| 28 | simpr | |- ( ( ( Ord A /\ x e. On ) /\ ( x e. A -> suc x e. A ) ) -> ( x e. A -> suc x e. A ) ) |
|
| 29 | 27 28 | orim12d | |- ( ( ( Ord A /\ x e. On ) /\ ( x e. A -> suc x e. A ) ) -> ( ( A C_ x \/ x e. A ) -> ( A e. suc x \/ suc x e. A ) ) ) |
| 30 | 24 29 | mpd | |- ( ( ( Ord A /\ x e. On ) /\ ( x e. A -> suc x e. A ) ) -> ( A e. suc x \/ suc x e. A ) ) |
| 31 | 30 | ex | |- ( ( Ord A /\ x e. On ) -> ( ( x e. A -> suc x e. A ) -> ( A e. suc x \/ suc x e. A ) ) ) |
| 32 | 18 31 | impbid | |- ( ( Ord A /\ x e. On ) -> ( ( A e. suc x \/ suc x e. A ) <-> ( x e. A -> suc x e. A ) ) ) |
| 33 | 8 32 | bitr3d | |- ( ( Ord A /\ x e. On ) -> ( -. A = suc x <-> ( x e. A -> suc x e. A ) ) ) |
| 34 | 33 | pm5.74da | |- ( Ord A -> ( ( x e. On -> -. A = suc x ) <-> ( x e. On -> ( x e. A -> suc x e. A ) ) ) ) |
| 35 | impexp | |- ( ( ( x e. On /\ x e. A ) -> suc x e. A ) <-> ( x e. On -> ( x e. A -> suc x e. A ) ) ) |
|
| 36 | simpr | |- ( ( x e. On /\ x e. A ) -> x e. A ) |
|
| 37 | ordelon | |- ( ( Ord A /\ x e. A ) -> x e. On ) |
|
| 38 | 37 | ex | |- ( Ord A -> ( x e. A -> x e. On ) ) |
| 39 | 38 | ancrd | |- ( Ord A -> ( x e. A -> ( x e. On /\ x e. A ) ) ) |
| 40 | 36 39 | impbid2 | |- ( Ord A -> ( ( x e. On /\ x e. A ) <-> x e. A ) ) |
| 41 | 40 | imbi1d | |- ( Ord A -> ( ( ( x e. On /\ x e. A ) -> suc x e. A ) <-> ( x e. A -> suc x e. A ) ) ) |
| 42 | 35 41 | bitr3id | |- ( Ord A -> ( ( x e. On -> ( x e. A -> suc x e. A ) ) <-> ( x e. A -> suc x e. A ) ) ) |
| 43 | 34 42 | bitrd | |- ( Ord A -> ( ( x e. On -> -. A = suc x ) <-> ( x e. A -> suc x e. A ) ) ) |
| 44 | 43 | ralbidv2 | |- ( Ord A -> ( A. x e. On -. A = suc x <-> A. x e. A suc x e. A ) ) |
| 45 | 2 44 | bitr3id | |- ( Ord A -> ( -. E. x e. On A = suc x <-> A. x e. A suc x e. A ) ) |
| 46 | 1 45 | bitrd | |- ( Ord A -> ( A = U. A <-> A. x e. A suc x e. A ) ) |