This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordinal class is equal to its union if and only if it is not the successor of an ordinal. Closed-form generalization of onuninsuci . (Contributed by NM, 18-Feb-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | orduninsuc | ⊢ ( Ord 𝐴 → ( 𝐴 = ∪ 𝐴 ↔ ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordeleqon | ⊢ ( Ord 𝐴 ↔ ( 𝐴 ∈ On ∨ 𝐴 = On ) ) | |
| 2 | id | ⊢ ( 𝐴 = if ( 𝐴 ∈ On , 𝐴 , ∅ ) → 𝐴 = if ( 𝐴 ∈ On , 𝐴 , ∅ ) ) | |
| 3 | unieq | ⊢ ( 𝐴 = if ( 𝐴 ∈ On , 𝐴 , ∅ ) → ∪ 𝐴 = ∪ if ( 𝐴 ∈ On , 𝐴 , ∅ ) ) | |
| 4 | 2 3 | eqeq12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ On , 𝐴 , ∅ ) → ( 𝐴 = ∪ 𝐴 ↔ if ( 𝐴 ∈ On , 𝐴 , ∅ ) = ∪ if ( 𝐴 ∈ On , 𝐴 , ∅ ) ) ) |
| 5 | eqeq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ On , 𝐴 , ∅ ) → ( 𝐴 = suc 𝑥 ↔ if ( 𝐴 ∈ On , 𝐴 , ∅ ) = suc 𝑥 ) ) | |
| 6 | 5 | rexbidv | ⊢ ( 𝐴 = if ( 𝐴 ∈ On , 𝐴 , ∅ ) → ( ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ↔ ∃ 𝑥 ∈ On if ( 𝐴 ∈ On , 𝐴 , ∅ ) = suc 𝑥 ) ) |
| 7 | 6 | notbid | ⊢ ( 𝐴 = if ( 𝐴 ∈ On , 𝐴 , ∅ ) → ( ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ↔ ¬ ∃ 𝑥 ∈ On if ( 𝐴 ∈ On , 𝐴 , ∅ ) = suc 𝑥 ) ) |
| 8 | 4 7 | bibi12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ On , 𝐴 , ∅ ) → ( ( 𝐴 = ∪ 𝐴 ↔ ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ↔ ( if ( 𝐴 ∈ On , 𝐴 , ∅ ) = ∪ if ( 𝐴 ∈ On , 𝐴 , ∅ ) ↔ ¬ ∃ 𝑥 ∈ On if ( 𝐴 ∈ On , 𝐴 , ∅ ) = suc 𝑥 ) ) ) |
| 9 | 0elon | ⊢ ∅ ∈ On | |
| 10 | 9 | elimel | ⊢ if ( 𝐴 ∈ On , 𝐴 , ∅ ) ∈ On |
| 11 | 10 | onuninsuci | ⊢ ( if ( 𝐴 ∈ On , 𝐴 , ∅ ) = ∪ if ( 𝐴 ∈ On , 𝐴 , ∅ ) ↔ ¬ ∃ 𝑥 ∈ On if ( 𝐴 ∈ On , 𝐴 , ∅ ) = suc 𝑥 ) |
| 12 | 8 11 | dedth | ⊢ ( 𝐴 ∈ On → ( 𝐴 = ∪ 𝐴 ↔ ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) |
| 13 | unon | ⊢ ∪ On = On | |
| 14 | 13 | eqcomi | ⊢ On = ∪ On |
| 15 | onprc | ⊢ ¬ On ∈ V | |
| 16 | vex | ⊢ 𝑥 ∈ V | |
| 17 | 16 | sucex | ⊢ suc 𝑥 ∈ V |
| 18 | eleq1 | ⊢ ( On = suc 𝑥 → ( On ∈ V ↔ suc 𝑥 ∈ V ) ) | |
| 19 | 17 18 | mpbiri | ⊢ ( On = suc 𝑥 → On ∈ V ) |
| 20 | 15 19 | mto | ⊢ ¬ On = suc 𝑥 |
| 21 | 20 | a1i | ⊢ ( 𝑥 ∈ On → ¬ On = suc 𝑥 ) |
| 22 | 21 | nrex | ⊢ ¬ ∃ 𝑥 ∈ On On = suc 𝑥 |
| 23 | 14 22 | 2th | ⊢ ( On = ∪ On ↔ ¬ ∃ 𝑥 ∈ On On = suc 𝑥 ) |
| 24 | id | ⊢ ( 𝐴 = On → 𝐴 = On ) | |
| 25 | unieq | ⊢ ( 𝐴 = On → ∪ 𝐴 = ∪ On ) | |
| 26 | 24 25 | eqeq12d | ⊢ ( 𝐴 = On → ( 𝐴 = ∪ 𝐴 ↔ On = ∪ On ) ) |
| 27 | eqeq1 | ⊢ ( 𝐴 = On → ( 𝐴 = suc 𝑥 ↔ On = suc 𝑥 ) ) | |
| 28 | 27 | rexbidv | ⊢ ( 𝐴 = On → ( ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ↔ ∃ 𝑥 ∈ On On = suc 𝑥 ) ) |
| 29 | 28 | notbid | ⊢ ( 𝐴 = On → ( ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ↔ ¬ ∃ 𝑥 ∈ On On = suc 𝑥 ) ) |
| 30 | 26 29 | bibi12d | ⊢ ( 𝐴 = On → ( ( 𝐴 = ∪ 𝐴 ↔ ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ↔ ( On = ∪ On ↔ ¬ ∃ 𝑥 ∈ On On = suc 𝑥 ) ) ) |
| 31 | 23 30 | mpbiri | ⊢ ( 𝐴 = On → ( 𝐴 = ∪ 𝐴 ↔ ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) |
| 32 | 12 31 | jaoi | ⊢ ( ( 𝐴 ∈ On ∨ 𝐴 = On ) → ( 𝐴 = ∪ 𝐴 ↔ ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) |
| 33 | 1 32 | sylbi | ⊢ ( Ord 𝐴 → ( 𝐴 = ∪ 𝐴 ↔ ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) |