This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ordtype . (Contributed by Mario Carneiro, 24-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ordtypelem.1 | |- F = recs ( G ) |
|
| ordtypelem.2 | |- C = { w e. A | A. j e. ran h j R w } |
||
| ordtypelem.3 | |- G = ( h e. _V |-> ( iota_ v e. C A. u e. C -. u R v ) ) |
||
| ordtypelem.5 | |- T = { x e. On | E. t e. A A. z e. ( F " x ) z R t } |
||
| ordtypelem.6 | |- O = OrdIso ( R , A ) |
||
| ordtypelem.7 | |- ( ph -> R We A ) |
||
| ordtypelem.8 | |- ( ph -> R Se A ) |
||
| Assertion | ordtypelem6 | |- ( ( ph /\ M e. dom O ) -> ( N e. M -> ( O ` N ) R ( O ` M ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtypelem.1 | |- F = recs ( G ) |
|
| 2 | ordtypelem.2 | |- C = { w e. A | A. j e. ran h j R w } |
|
| 3 | ordtypelem.3 | |- G = ( h e. _V |-> ( iota_ v e. C A. u e. C -. u R v ) ) |
|
| 4 | ordtypelem.5 | |- T = { x e. On | E. t e. A A. z e. ( F " x ) z R t } |
|
| 5 | ordtypelem.6 | |- O = OrdIso ( R , A ) |
|
| 6 | ordtypelem.7 | |- ( ph -> R We A ) |
|
| 7 | ordtypelem.8 | |- ( ph -> R Se A ) |
|
| 8 | fveq2 | |- ( a = N -> ( F ` a ) = ( F ` N ) ) |
|
| 9 | 8 | breq1d | |- ( a = N -> ( ( F ` a ) R ( F ` M ) <-> ( F ` N ) R ( F ` M ) ) ) |
| 10 | ssrab2 | |- { v e. { w e. A | A. j e. ( F " M ) j R w } | A. u e. { w e. A | A. j e. ( F " M ) j R w } -. u R v } C_ { w e. A | A. j e. ( F " M ) j R w } |
|
| 11 | simpr | |- ( ( ph /\ M e. dom O ) -> M e. dom O ) |
|
| 12 | 1 2 3 4 5 6 7 | ordtypelem4 | |- ( ph -> O : ( T i^i dom F ) --> A ) |
| 13 | 12 | fdmd | |- ( ph -> dom O = ( T i^i dom F ) ) |
| 14 | 13 | adantr | |- ( ( ph /\ M e. dom O ) -> dom O = ( T i^i dom F ) ) |
| 15 | 11 14 | eleqtrd | |- ( ( ph /\ M e. dom O ) -> M e. ( T i^i dom F ) ) |
| 16 | 1 2 3 4 5 6 7 | ordtypelem3 | |- ( ( ph /\ M e. ( T i^i dom F ) ) -> ( F ` M ) e. { v e. { w e. A | A. j e. ( F " M ) j R w } | A. u e. { w e. A | A. j e. ( F " M ) j R w } -. u R v } ) |
| 17 | 15 16 | syldan | |- ( ( ph /\ M e. dom O ) -> ( F ` M ) e. { v e. { w e. A | A. j e. ( F " M ) j R w } | A. u e. { w e. A | A. j e. ( F " M ) j R w } -. u R v } ) |
| 18 | 10 17 | sselid | |- ( ( ph /\ M e. dom O ) -> ( F ` M ) e. { w e. A | A. j e. ( F " M ) j R w } ) |
| 19 | breq2 | |- ( w = ( F ` M ) -> ( j R w <-> j R ( F ` M ) ) ) |
|
| 20 | 19 | ralbidv | |- ( w = ( F ` M ) -> ( A. j e. ( F " M ) j R w <-> A. j e. ( F " M ) j R ( F ` M ) ) ) |
| 21 | 20 | elrab | |- ( ( F ` M ) e. { w e. A | A. j e. ( F " M ) j R w } <-> ( ( F ` M ) e. A /\ A. j e. ( F " M ) j R ( F ` M ) ) ) |
| 22 | 21 | simprbi | |- ( ( F ` M ) e. { w e. A | A. j e. ( F " M ) j R w } -> A. j e. ( F " M ) j R ( F ` M ) ) |
| 23 | 18 22 | syl | |- ( ( ph /\ M e. dom O ) -> A. j e. ( F " M ) j R ( F ` M ) ) |
| 24 | 1 | tfr1a | |- ( Fun F /\ Lim dom F ) |
| 25 | 24 | simpli | |- Fun F |
| 26 | funfn | |- ( Fun F <-> F Fn dom F ) |
|
| 27 | 25 26 | mpbi | |- F Fn dom F |
| 28 | 24 | simpri | |- Lim dom F |
| 29 | limord | |- ( Lim dom F -> Ord dom F ) |
|
| 30 | 28 29 | ax-mp | |- Ord dom F |
| 31 | inss2 | |- ( T i^i dom F ) C_ dom F |
|
| 32 | 13 31 | eqsstrdi | |- ( ph -> dom O C_ dom F ) |
| 33 | 32 | sselda | |- ( ( ph /\ M e. dom O ) -> M e. dom F ) |
| 34 | ordelss | |- ( ( Ord dom F /\ M e. dom F ) -> M C_ dom F ) |
|
| 35 | 30 33 34 | sylancr | |- ( ( ph /\ M e. dom O ) -> M C_ dom F ) |
| 36 | breq1 | |- ( j = ( F ` a ) -> ( j R ( F ` M ) <-> ( F ` a ) R ( F ` M ) ) ) |
|
| 37 | 36 | ralima | |- ( ( F Fn dom F /\ M C_ dom F ) -> ( A. j e. ( F " M ) j R ( F ` M ) <-> A. a e. M ( F ` a ) R ( F ` M ) ) ) |
| 38 | 27 35 37 | sylancr | |- ( ( ph /\ M e. dom O ) -> ( A. j e. ( F " M ) j R ( F ` M ) <-> A. a e. M ( F ` a ) R ( F ` M ) ) ) |
| 39 | 23 38 | mpbid | |- ( ( ph /\ M e. dom O ) -> A. a e. M ( F ` a ) R ( F ` M ) ) |
| 40 | 39 | adantrr | |- ( ( ph /\ ( M e. dom O /\ N e. M ) ) -> A. a e. M ( F ` a ) R ( F ` M ) ) |
| 41 | simprr | |- ( ( ph /\ ( M e. dom O /\ N e. M ) ) -> N e. M ) |
|
| 42 | 9 40 41 | rspcdva | |- ( ( ph /\ ( M e. dom O /\ N e. M ) ) -> ( F ` N ) R ( F ` M ) ) |
| 43 | 1 2 3 4 5 6 7 | ordtypelem1 | |- ( ph -> O = ( F |` T ) ) |
| 44 | 43 | adantr | |- ( ( ph /\ ( M e. dom O /\ N e. M ) ) -> O = ( F |` T ) ) |
| 45 | 44 | fveq1d | |- ( ( ph /\ ( M e. dom O /\ N e. M ) ) -> ( O ` N ) = ( ( F |` T ) ` N ) ) |
| 46 | 1 2 3 4 5 6 7 | ordtypelem2 | |- ( ph -> Ord T ) |
| 47 | inss1 | |- ( T i^i dom F ) C_ T |
|
| 48 | 13 47 | eqsstrdi | |- ( ph -> dom O C_ T ) |
| 49 | 48 | sselda | |- ( ( ph /\ M e. dom O ) -> M e. T ) |
| 50 | 49 | adantrr | |- ( ( ph /\ ( M e. dom O /\ N e. M ) ) -> M e. T ) |
| 51 | ordelss | |- ( ( Ord T /\ M e. T ) -> M C_ T ) |
|
| 52 | 46 50 51 | syl2an2r | |- ( ( ph /\ ( M e. dom O /\ N e. M ) ) -> M C_ T ) |
| 53 | 52 41 | sseldd | |- ( ( ph /\ ( M e. dom O /\ N e. M ) ) -> N e. T ) |
| 54 | 53 | fvresd | |- ( ( ph /\ ( M e. dom O /\ N e. M ) ) -> ( ( F |` T ) ` N ) = ( F ` N ) ) |
| 55 | 45 54 | eqtrd | |- ( ( ph /\ ( M e. dom O /\ N e. M ) ) -> ( O ` N ) = ( F ` N ) ) |
| 56 | 44 | fveq1d | |- ( ( ph /\ ( M e. dom O /\ N e. M ) ) -> ( O ` M ) = ( ( F |` T ) ` M ) ) |
| 57 | 50 | fvresd | |- ( ( ph /\ ( M e. dom O /\ N e. M ) ) -> ( ( F |` T ) ` M ) = ( F ` M ) ) |
| 58 | 56 57 | eqtrd | |- ( ( ph /\ ( M e. dom O /\ N e. M ) ) -> ( O ` M ) = ( F ` M ) ) |
| 59 | 42 55 58 | 3brtr4d | |- ( ( ph /\ ( M e. dom O /\ N e. M ) ) -> ( O ` N ) R ( O ` M ) ) |
| 60 | 59 | expr | |- ( ( ph /\ M e. dom O ) -> ( N e. M -> ( O ` N ) R ( O ` M ) ) ) |