This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For ordinal classes, inclusion is equivalent to membership or equality. (Contributed by NM, 25-Nov-1995) (Proof shortened by Andrew Salmon, 25-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordsseleq | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspss | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ) ) | |
| 2 | ordelpss | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ∈ 𝐵 ↔ 𝐴 ⊊ 𝐵 ) ) | |
| 3 | 2 | orbi1d | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ) ↔ ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ) ) ) |
| 4 | 1 3 | bitr4id | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ) ) ) |