This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Being a unit is a symmetric property, so it transfers to the opposite ring. (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opprunit.1 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| opprunit.2 | ⊢ 𝑆 = ( oppr ‘ 𝑅 ) | ||
| Assertion | opprunit | ⊢ 𝑈 = ( Unit ‘ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprunit.1 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| 2 | opprunit.2 | ⊢ 𝑆 = ( oppr ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 4 | 2 3 | opprbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑆 ) |
| 5 | eqid | ⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) | |
| 6 | eqid | ⊢ ( oppr ‘ 𝑆 ) = ( oppr ‘ 𝑆 ) | |
| 7 | eqid | ⊢ ( .r ‘ ( oppr ‘ 𝑆 ) ) = ( .r ‘ ( oppr ‘ 𝑆 ) ) | |
| 8 | 4 5 6 7 | opprmul | ⊢ ( 𝑦 ( .r ‘ ( oppr ‘ 𝑆 ) ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) |
| 9 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 10 | 3 9 2 5 | opprmul | ⊢ ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) |
| 11 | 8 10 | eqtr2i | ⊢ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 𝑦 ( .r ‘ ( oppr ‘ 𝑆 ) ) 𝑥 ) |
| 12 | 11 | eqeq1i | ⊢ ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ↔ ( 𝑦 ( .r ‘ ( oppr ‘ 𝑆 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) |
| 13 | 12 | rexbii | ⊢ ( ∃ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ↔ ∃ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝑦 ( .r ‘ ( oppr ‘ 𝑆 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) |
| 14 | 13 | anbi2i | ⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝑦 ( .r ‘ ( oppr ‘ 𝑆 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) |
| 15 | eqid | ⊢ ( ∥r ‘ 𝑅 ) = ( ∥r ‘ 𝑅 ) | |
| 16 | 3 15 9 | dvdsr | ⊢ ( 𝑥 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) |
| 17 | 6 4 | opprbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( oppr ‘ 𝑆 ) ) |
| 18 | eqid | ⊢ ( ∥r ‘ ( oppr ‘ 𝑆 ) ) = ( ∥r ‘ ( oppr ‘ 𝑆 ) ) | |
| 19 | 17 18 7 | dvdsr | ⊢ ( 𝑥 ( ∥r ‘ ( oppr ‘ 𝑆 ) ) ( 1r ‘ 𝑅 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝑦 ( .r ‘ ( oppr ‘ 𝑆 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) |
| 20 | 14 16 19 | 3bitr4i | ⊢ ( 𝑥 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ↔ 𝑥 ( ∥r ‘ ( oppr ‘ 𝑆 ) ) ( 1r ‘ 𝑅 ) ) |
| 21 | 20 | anbi2ci | ⊢ ( ( 𝑥 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ∧ 𝑥 ( ∥r ‘ 𝑆 ) ( 1r ‘ 𝑅 ) ) ↔ ( 𝑥 ( ∥r ‘ 𝑆 ) ( 1r ‘ 𝑅 ) ∧ 𝑥 ( ∥r ‘ ( oppr ‘ 𝑆 ) ) ( 1r ‘ 𝑅 ) ) ) |
| 22 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 23 | eqid | ⊢ ( ∥r ‘ 𝑆 ) = ( ∥r ‘ 𝑆 ) | |
| 24 | 1 22 15 2 23 | isunit | ⊢ ( 𝑥 ∈ 𝑈 ↔ ( 𝑥 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ∧ 𝑥 ( ∥r ‘ 𝑆 ) ( 1r ‘ 𝑅 ) ) ) |
| 25 | eqid | ⊢ ( Unit ‘ 𝑆 ) = ( Unit ‘ 𝑆 ) | |
| 26 | 2 22 | oppr1 | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑆 ) |
| 27 | 25 26 23 6 18 | isunit | ⊢ ( 𝑥 ∈ ( Unit ‘ 𝑆 ) ↔ ( 𝑥 ( ∥r ‘ 𝑆 ) ( 1r ‘ 𝑅 ) ∧ 𝑥 ( ∥r ‘ ( oppr ‘ 𝑆 ) ) ( 1r ‘ 𝑅 ) ) ) |
| 28 | 21 24 27 | 3bitr4i | ⊢ ( 𝑥 ∈ 𝑈 ↔ 𝑥 ∈ ( Unit ‘ 𝑆 ) ) |
| 29 | 28 | eqriv | ⊢ 𝑈 = ( Unit ‘ 𝑆 ) |