This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of being a unit in a commutative ring. (Contributed by Mario Carneiro, 18-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | crngunit.1 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| crngunit.2 | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| crngunit.3 | ⊢ ∥ = ( ∥r ‘ 𝑅 ) | ||
| Assertion | crngunit | ⊢ ( 𝑅 ∈ CRing → ( 𝑋 ∈ 𝑈 ↔ 𝑋 ∥ 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crngunit.1 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| 2 | crngunit.2 | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 3 | crngunit.3 | ⊢ ∥ = ( ∥r ‘ 𝑅 ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 5 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 6 | eqid | ⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) | |
| 7 | eqid | ⊢ ( .r ‘ ( oppr ‘ 𝑅 ) ) = ( .r ‘ ( oppr ‘ 𝑅 ) ) | |
| 8 | 4 5 6 7 | crngoppr | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑋 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑋 ) = ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑋 ) ) |
| 9 | 8 | 3expa | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑋 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑋 ) = ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑋 ) ) |
| 10 | 9 | eqcomd | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑋 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑋 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑋 ) ) |
| 11 | 10 | an32s | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑋 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑋 ) ) |
| 12 | 11 | eqeq1d | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑋 ) = 1 ↔ ( 𝑦 ( .r ‘ 𝑅 ) 𝑋 ) = 1 ) ) |
| 13 | 12 | rexbidva | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ ( Base ‘ 𝑅 ) ) → ( ∃ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑋 ) = 1 ↔ ∃ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑋 ) = 1 ) ) |
| 14 | 13 | pm5.32da | ⊢ ( 𝑅 ∈ CRing → ( ( 𝑋 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑋 ) = 1 ) ↔ ( 𝑋 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑋 ) = 1 ) ) ) |
| 15 | 6 4 | opprbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( oppr ‘ 𝑅 ) ) |
| 16 | eqid | ⊢ ( ∥r ‘ ( oppr ‘ 𝑅 ) ) = ( ∥r ‘ ( oppr ‘ 𝑅 ) ) | |
| 17 | 15 16 7 | dvdsr | ⊢ ( 𝑋 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) 1 ↔ ( 𝑋 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑋 ) = 1 ) ) |
| 18 | 4 3 5 | dvdsr | ⊢ ( 𝑋 ∥ 1 ↔ ( 𝑋 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑋 ) = 1 ) ) |
| 19 | 14 17 18 | 3bitr4g | ⊢ ( 𝑅 ∈ CRing → ( 𝑋 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) 1 ↔ 𝑋 ∥ 1 ) ) |
| 20 | 19 | anbi2d | ⊢ ( 𝑅 ∈ CRing → ( ( 𝑋 ∥ 1 ∧ 𝑋 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) 1 ) ↔ ( 𝑋 ∥ 1 ∧ 𝑋 ∥ 1 ) ) ) |
| 21 | 1 2 3 6 16 | isunit | ⊢ ( 𝑋 ∈ 𝑈 ↔ ( 𝑋 ∥ 1 ∧ 𝑋 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) 1 ) ) |
| 22 | pm4.24 | ⊢ ( 𝑋 ∥ 1 ↔ ( 𝑋 ∥ 1 ∧ 𝑋 ∥ 1 ) ) | |
| 23 | 20 21 22 | 3bitr4g | ⊢ ( 𝑅 ∈ CRing → ( 𝑋 ∈ 𝑈 ↔ 𝑋 ∥ 1 ) ) |