This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvdsr.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| dvdsr.2 | ⊢ ∥ = ( ∥r ‘ 𝑅 ) | ||
| dvdsr.3 | ⊢ · = ( .r ‘ 𝑅 ) | ||
| Assertion | dvdsr | ⊢ ( 𝑋 ∥ 𝑌 ↔ ( 𝑋 ∈ 𝐵 ∧ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑋 ) = 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsr.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | dvdsr.2 | ⊢ ∥ = ( ∥r ‘ 𝑅 ) | |
| 3 | dvdsr.3 | ⊢ · = ( .r ‘ 𝑅 ) | |
| 4 | 2 | reldvdsr | ⊢ Rel ∥ |
| 5 | 4 | brrelex12i | ⊢ ( 𝑋 ∥ 𝑌 → ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ) |
| 6 | elex | ⊢ ( 𝑋 ∈ 𝐵 → 𝑋 ∈ V ) | |
| 7 | id | ⊢ ( ( 𝑧 · 𝑋 ) = 𝑌 → ( 𝑧 · 𝑋 ) = 𝑌 ) | |
| 8 | ovex | ⊢ ( 𝑧 · 𝑋 ) ∈ V | |
| 9 | 7 8 | eqeltrrdi | ⊢ ( ( 𝑧 · 𝑋 ) = 𝑌 → 𝑌 ∈ V ) |
| 10 | 9 | rexlimivw | ⊢ ( ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑋 ) = 𝑌 → 𝑌 ∈ V ) |
| 11 | 6 10 | anim12i | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑋 ) = 𝑌 ) → ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ) |
| 12 | simpl | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → 𝑥 = 𝑋 ) | |
| 13 | 12 | eleq1d | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝑥 ∈ 𝐵 ↔ 𝑋 ∈ 𝐵 ) ) |
| 14 | 12 | oveq2d | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝑧 · 𝑥 ) = ( 𝑧 · 𝑋 ) ) |
| 15 | simpr | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → 𝑦 = 𝑌 ) | |
| 16 | 14 15 | eqeq12d | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( ( 𝑧 · 𝑥 ) = 𝑦 ↔ ( 𝑧 · 𝑋 ) = 𝑌 ) ) |
| 17 | 16 | rexbidv | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ↔ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑋 ) = 𝑌 ) ) |
| 18 | 13 17 | anbi12d | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ) ↔ ( 𝑋 ∈ 𝐵 ∧ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑋 ) = 𝑌 ) ) ) |
| 19 | 1 2 3 | dvdsrval | ⊢ ∥ = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ) } |
| 20 | 18 19 | brabga | ⊢ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → ( 𝑋 ∥ 𝑌 ↔ ( 𝑋 ∈ 𝐵 ∧ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑋 ) = 𝑌 ) ) ) |
| 21 | 5 11 20 | pm5.21nii | ⊢ ( 𝑋 ∥ 𝑌 ↔ ( 𝑋 ∈ 𝐵 ∧ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑋 ) = 𝑌 ) ) |