This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Irreducibility is symmetric, so the irreducible elements of the opposite ring are the same as the original ring. (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opprirred.1 | ⊢ 𝑆 = ( oppr ‘ 𝑅 ) | |
| opprirred.2 | ⊢ 𝐼 = ( Irred ‘ 𝑅 ) | ||
| Assertion | opprirred | ⊢ 𝐼 = ( Irred ‘ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprirred.1 | ⊢ 𝑆 = ( oppr ‘ 𝑅 ) | |
| 2 | opprirred.2 | ⊢ 𝐼 = ( Irred ‘ 𝑅 ) | |
| 3 | ralcom | ⊢ ( ∀ 𝑧 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ∀ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ≠ 𝑥 ↔ ∀ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ∀ 𝑧 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ≠ 𝑥 ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 5 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 6 | eqid | ⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) | |
| 7 | 4 5 1 6 | opprmul | ⊢ ( 𝑦 ( .r ‘ 𝑆 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) |
| 8 | 7 | neeq1i | ⊢ ( ( 𝑦 ( .r ‘ 𝑆 ) 𝑧 ) ≠ 𝑥 ↔ ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ≠ 𝑥 ) |
| 9 | 8 | 2ralbii | ⊢ ( ∀ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ∀ 𝑧 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ( 𝑦 ( .r ‘ 𝑆 ) 𝑧 ) ≠ 𝑥 ↔ ∀ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ∀ 𝑧 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ≠ 𝑥 ) |
| 10 | 3 9 | bitr4i | ⊢ ( ∀ 𝑧 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ∀ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ≠ 𝑥 ↔ ∀ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ∀ 𝑧 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ( 𝑦 ( .r ‘ 𝑆 ) 𝑧 ) ≠ 𝑥 ) |
| 11 | 10 | anbi2i | ⊢ ( ( 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ∧ ∀ 𝑧 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ∀ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ≠ 𝑥 ) ↔ ( 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ∧ ∀ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ∀ 𝑧 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ( 𝑦 ( .r ‘ 𝑆 ) 𝑧 ) ≠ 𝑥 ) ) |
| 12 | eqid | ⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) | |
| 13 | eqid | ⊢ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) = ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) | |
| 14 | 4 12 2 13 5 | isirred | ⊢ ( 𝑥 ∈ 𝐼 ↔ ( 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ∧ ∀ 𝑧 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ∀ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ≠ 𝑥 ) ) |
| 15 | 1 4 | opprbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑆 ) |
| 16 | 12 1 | opprunit | ⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑆 ) |
| 17 | eqid | ⊢ ( Irred ‘ 𝑆 ) = ( Irred ‘ 𝑆 ) | |
| 18 | 15 16 17 13 6 | isirred | ⊢ ( 𝑥 ∈ ( Irred ‘ 𝑆 ) ↔ ( 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ∧ ∀ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ∀ 𝑧 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ( 𝑦 ( .r ‘ 𝑆 ) 𝑧 ) ≠ 𝑥 ) ) |
| 19 | 11 14 18 | 3bitr4i | ⊢ ( 𝑥 ∈ 𝐼 ↔ 𝑥 ∈ ( Irred ‘ 𝑆 ) ) |
| 20 | 19 | eqriv | ⊢ 𝐼 = ( Irred ‘ 𝑆 ) |