This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Irreducibility is symmetric, so the irreducible elements of the opposite ring are the same as the original ring. (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opprirred.1 | |- S = ( oppR ` R ) |
|
| opprirred.2 | |- I = ( Irred ` R ) |
||
| Assertion | opprirred | |- I = ( Irred ` S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprirred.1 | |- S = ( oppR ` R ) |
|
| 2 | opprirred.2 | |- I = ( Irred ` R ) |
|
| 3 | ralcom | |- ( A. z e. ( ( Base ` R ) \ ( Unit ` R ) ) A. y e. ( ( Base ` R ) \ ( Unit ` R ) ) ( z ( .r ` R ) y ) =/= x <-> A. y e. ( ( Base ` R ) \ ( Unit ` R ) ) A. z e. ( ( Base ` R ) \ ( Unit ` R ) ) ( z ( .r ` R ) y ) =/= x ) |
|
| 4 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 5 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 6 | eqid | |- ( .r ` S ) = ( .r ` S ) |
|
| 7 | 4 5 1 6 | opprmul | |- ( y ( .r ` S ) z ) = ( z ( .r ` R ) y ) |
| 8 | 7 | neeq1i | |- ( ( y ( .r ` S ) z ) =/= x <-> ( z ( .r ` R ) y ) =/= x ) |
| 9 | 8 | 2ralbii | |- ( A. y e. ( ( Base ` R ) \ ( Unit ` R ) ) A. z e. ( ( Base ` R ) \ ( Unit ` R ) ) ( y ( .r ` S ) z ) =/= x <-> A. y e. ( ( Base ` R ) \ ( Unit ` R ) ) A. z e. ( ( Base ` R ) \ ( Unit ` R ) ) ( z ( .r ` R ) y ) =/= x ) |
| 10 | 3 9 | bitr4i | |- ( A. z e. ( ( Base ` R ) \ ( Unit ` R ) ) A. y e. ( ( Base ` R ) \ ( Unit ` R ) ) ( z ( .r ` R ) y ) =/= x <-> A. y e. ( ( Base ` R ) \ ( Unit ` R ) ) A. z e. ( ( Base ` R ) \ ( Unit ` R ) ) ( y ( .r ` S ) z ) =/= x ) |
| 11 | 10 | anbi2i | |- ( ( x e. ( ( Base ` R ) \ ( Unit ` R ) ) /\ A. z e. ( ( Base ` R ) \ ( Unit ` R ) ) A. y e. ( ( Base ` R ) \ ( Unit ` R ) ) ( z ( .r ` R ) y ) =/= x ) <-> ( x e. ( ( Base ` R ) \ ( Unit ` R ) ) /\ A. y e. ( ( Base ` R ) \ ( Unit ` R ) ) A. z e. ( ( Base ` R ) \ ( Unit ` R ) ) ( y ( .r ` S ) z ) =/= x ) ) |
| 12 | eqid | |- ( Unit ` R ) = ( Unit ` R ) |
|
| 13 | eqid | |- ( ( Base ` R ) \ ( Unit ` R ) ) = ( ( Base ` R ) \ ( Unit ` R ) ) |
|
| 14 | 4 12 2 13 5 | isirred | |- ( x e. I <-> ( x e. ( ( Base ` R ) \ ( Unit ` R ) ) /\ A. z e. ( ( Base ` R ) \ ( Unit ` R ) ) A. y e. ( ( Base ` R ) \ ( Unit ` R ) ) ( z ( .r ` R ) y ) =/= x ) ) |
| 15 | 1 4 | opprbas | |- ( Base ` R ) = ( Base ` S ) |
| 16 | 12 1 | opprunit | |- ( Unit ` R ) = ( Unit ` S ) |
| 17 | eqid | |- ( Irred ` S ) = ( Irred ` S ) |
|
| 18 | 15 16 17 13 6 | isirred | |- ( x e. ( Irred ` S ) <-> ( x e. ( ( Base ` R ) \ ( Unit ` R ) ) /\ A. y e. ( ( Base ` R ) \ ( Unit ` R ) ) A. z e. ( ( Base ` R ) \ ( Unit ` R ) ) ( y ( .r ` S ) z ) =/= x ) ) |
| 19 | 11 14 18 | 3bitr4i | |- ( x e. I <-> x e. ( Irred ` S ) ) |
| 20 | 19 | eqriv | |- I = ( Irred ` S ) |