This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Being a subgroup is a symmetric property. (Contributed by Mario Carneiro, 17-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | oppggic.o | ⊢ 𝑂 = ( oppg ‘ 𝐺 ) | |
| Assertion | oppgsubg | ⊢ ( SubGrp ‘ 𝐺 ) = ( SubGrp ‘ 𝑂 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppggic.o | ⊢ 𝑂 = ( oppg ‘ 𝐺 ) | |
| 2 | subgrcl | ⊢ ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) | |
| 3 | subgrcl | ⊢ ( 𝑥 ∈ ( SubGrp ‘ 𝑂 ) → 𝑂 ∈ Grp ) | |
| 4 | 1 | oppggrpb | ⊢ ( 𝐺 ∈ Grp ↔ 𝑂 ∈ Grp ) |
| 5 | 3 4 | sylibr | ⊢ ( 𝑥 ∈ ( SubGrp ‘ 𝑂 ) → 𝐺 ∈ Grp ) |
| 6 | 1 | oppgsubm | ⊢ ( SubMnd ‘ 𝐺 ) = ( SubMnd ‘ 𝑂 ) |
| 7 | 6 | eleq2i | ⊢ ( 𝑥 ∈ ( SubMnd ‘ 𝐺 ) ↔ 𝑥 ∈ ( SubMnd ‘ 𝑂 ) ) |
| 8 | 7 | a1i | ⊢ ( 𝐺 ∈ Grp → ( 𝑥 ∈ ( SubMnd ‘ 𝐺 ) ↔ 𝑥 ∈ ( SubMnd ‘ 𝑂 ) ) ) |
| 9 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 10 | 1 9 | oppginv | ⊢ ( 𝐺 ∈ Grp → ( invg ‘ 𝐺 ) = ( invg ‘ 𝑂 ) ) |
| 11 | 10 | fveq1d | ⊢ ( 𝐺 ∈ Grp → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) = ( ( invg ‘ 𝑂 ) ‘ 𝑦 ) ) |
| 12 | 11 | eleq1d | ⊢ ( 𝐺 ∈ Grp → ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑥 ↔ ( ( invg ‘ 𝑂 ) ‘ 𝑦 ) ∈ 𝑥 ) ) |
| 13 | 12 | ralbidv | ⊢ ( 𝐺 ∈ Grp → ( ∀ 𝑦 ∈ 𝑥 ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑥 ↔ ∀ 𝑦 ∈ 𝑥 ( ( invg ‘ 𝑂 ) ‘ 𝑦 ) ∈ 𝑥 ) ) |
| 14 | 8 13 | anbi12d | ⊢ ( 𝐺 ∈ Grp → ( ( 𝑥 ∈ ( SubMnd ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ 𝑥 ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑥 ) ↔ ( 𝑥 ∈ ( SubMnd ‘ 𝑂 ) ∧ ∀ 𝑦 ∈ 𝑥 ( ( invg ‘ 𝑂 ) ‘ 𝑦 ) ∈ 𝑥 ) ) ) |
| 15 | 9 | issubg3 | ⊢ ( 𝐺 ∈ Grp → ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝑥 ∈ ( SubMnd ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ 𝑥 ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑥 ) ) ) |
| 16 | eqid | ⊢ ( invg ‘ 𝑂 ) = ( invg ‘ 𝑂 ) | |
| 17 | 16 | issubg3 | ⊢ ( 𝑂 ∈ Grp → ( 𝑥 ∈ ( SubGrp ‘ 𝑂 ) ↔ ( 𝑥 ∈ ( SubMnd ‘ 𝑂 ) ∧ ∀ 𝑦 ∈ 𝑥 ( ( invg ‘ 𝑂 ) ‘ 𝑦 ) ∈ 𝑥 ) ) ) |
| 18 | 4 17 | sylbi | ⊢ ( 𝐺 ∈ Grp → ( 𝑥 ∈ ( SubGrp ‘ 𝑂 ) ↔ ( 𝑥 ∈ ( SubMnd ‘ 𝑂 ) ∧ ∀ 𝑦 ∈ 𝑥 ( ( invg ‘ 𝑂 ) ‘ 𝑦 ) ∈ 𝑥 ) ) ) |
| 19 | 14 15 18 | 3bitr4d | ⊢ ( 𝐺 ∈ Grp → ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ↔ 𝑥 ∈ ( SubGrp ‘ 𝑂 ) ) ) |
| 20 | 2 5 19 | pm5.21nii | ⊢ ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ↔ 𝑥 ∈ ( SubGrp ‘ 𝑂 ) ) |
| 21 | 20 | eqriv | ⊢ ( SubGrp ‘ 𝐺 ) = ( SubGrp ‘ 𝑂 ) |