This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Being a subgroup is a symmetric property. (Contributed by Mario Carneiro, 17-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | oppggic.o | |- O = ( oppG ` G ) |
|
| Assertion | oppgsubg | |- ( SubGrp ` G ) = ( SubGrp ` O ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppggic.o | |- O = ( oppG ` G ) |
|
| 2 | subgrcl | |- ( x e. ( SubGrp ` G ) -> G e. Grp ) |
|
| 3 | subgrcl | |- ( x e. ( SubGrp ` O ) -> O e. Grp ) |
|
| 4 | 1 | oppggrpb | |- ( G e. Grp <-> O e. Grp ) |
| 5 | 3 4 | sylibr | |- ( x e. ( SubGrp ` O ) -> G e. Grp ) |
| 6 | 1 | oppgsubm | |- ( SubMnd ` G ) = ( SubMnd ` O ) |
| 7 | 6 | eleq2i | |- ( x e. ( SubMnd ` G ) <-> x e. ( SubMnd ` O ) ) |
| 8 | 7 | a1i | |- ( G e. Grp -> ( x e. ( SubMnd ` G ) <-> x e. ( SubMnd ` O ) ) ) |
| 9 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 10 | 1 9 | oppginv | |- ( G e. Grp -> ( invg ` G ) = ( invg ` O ) ) |
| 11 | 10 | fveq1d | |- ( G e. Grp -> ( ( invg ` G ) ` y ) = ( ( invg ` O ) ` y ) ) |
| 12 | 11 | eleq1d | |- ( G e. Grp -> ( ( ( invg ` G ) ` y ) e. x <-> ( ( invg ` O ) ` y ) e. x ) ) |
| 13 | 12 | ralbidv | |- ( G e. Grp -> ( A. y e. x ( ( invg ` G ) ` y ) e. x <-> A. y e. x ( ( invg ` O ) ` y ) e. x ) ) |
| 14 | 8 13 | anbi12d | |- ( G e. Grp -> ( ( x e. ( SubMnd ` G ) /\ A. y e. x ( ( invg ` G ) ` y ) e. x ) <-> ( x e. ( SubMnd ` O ) /\ A. y e. x ( ( invg ` O ) ` y ) e. x ) ) ) |
| 15 | 9 | issubg3 | |- ( G e. Grp -> ( x e. ( SubGrp ` G ) <-> ( x e. ( SubMnd ` G ) /\ A. y e. x ( ( invg ` G ) ` y ) e. x ) ) ) |
| 16 | eqid | |- ( invg ` O ) = ( invg ` O ) |
|
| 17 | 16 | issubg3 | |- ( O e. Grp -> ( x e. ( SubGrp ` O ) <-> ( x e. ( SubMnd ` O ) /\ A. y e. x ( ( invg ` O ) ` y ) e. x ) ) ) |
| 18 | 4 17 | sylbi | |- ( G e. Grp -> ( x e. ( SubGrp ` O ) <-> ( x e. ( SubMnd ` O ) /\ A. y e. x ( ( invg ` O ) ` y ) e. x ) ) ) |
| 19 | 14 15 18 | 3bitr4d | |- ( G e. Grp -> ( x e. ( SubGrp ` G ) <-> x e. ( SubGrp ` O ) ) ) |
| 20 | 2 5 19 | pm5.21nii | |- ( x e. ( SubGrp ` G ) <-> x e. ( SubGrp ` O ) ) |
| 21 | 20 | eqriv | |- ( SubGrp ` G ) = ( SubGrp ` O ) |