This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converted opposite monoid has the same composition as that of the opposite category. Example 3.6(2) of Adamek p. 25. (Contributed by Zhi Wang, 22-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mndtccat.c | ⊢ ( 𝜑 → 𝐶 = ( MndToCat ‘ 𝑀 ) ) | |
| mndtccat.m | ⊢ ( 𝜑 → 𝑀 ∈ Mnd ) | ||
| oppgoppchom.d | ⊢ ( 𝜑 → 𝐷 = ( MndToCat ‘ ( oppg ‘ 𝑀 ) ) ) | ||
| oppgoppchom.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | ||
| oppgoppchom.x | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐷 ) ) | ||
| oppgoppchom.y | ⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝑂 ) ) | ||
| oppgoppcco.o | ⊢ ( 𝜑 → · = ( comp ‘ 𝐷 ) ) | ||
| oppgoppcco.x | ⊢ ( 𝜑 → ∙ = ( comp ‘ 𝑂 ) ) | ||
| Assertion | oppgoppcco | ⊢ ( 𝜑 → ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) = ( 〈 𝑌 , 𝑌 〉 ∙ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndtccat.c | ⊢ ( 𝜑 → 𝐶 = ( MndToCat ‘ 𝑀 ) ) | |
| 2 | mndtccat.m | ⊢ ( 𝜑 → 𝑀 ∈ Mnd ) | |
| 3 | oppgoppchom.d | ⊢ ( 𝜑 → 𝐷 = ( MndToCat ‘ ( oppg ‘ 𝑀 ) ) ) | |
| 4 | oppgoppchom.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| 5 | oppgoppchom.x | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐷 ) ) | |
| 6 | oppgoppchom.y | ⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝑂 ) ) | |
| 7 | oppgoppcco.o | ⊢ ( 𝜑 → · = ( comp ‘ 𝐷 ) ) | |
| 8 | oppgoppcco.x | ⊢ ( 𝜑 → ∙ = ( comp ‘ 𝑂 ) ) | |
| 9 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 10 | 4 9 | oppcbas | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝑂 ) |
| 11 | 10 | eqcomi | ⊢ ( Base ‘ 𝑂 ) = ( Base ‘ 𝐶 ) |
| 12 | 11 | a1i | ⊢ ( 𝜑 → ( Base ‘ 𝑂 ) = ( Base ‘ 𝐶 ) ) |
| 13 | eqidd | ⊢ ( 𝜑 → ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) ) | |
| 14 | 1 2 12 6 6 6 13 | mndtcco | ⊢ ( 𝜑 → ( 〈 𝑌 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑌 ) = ( +g ‘ 𝑀 ) ) |
| 15 | 14 | tposeqd | ⊢ ( 𝜑 → tpos ( 〈 𝑌 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑌 ) = tpos ( +g ‘ 𝑀 ) ) |
| 16 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 17 | 11 16 4 6 6 6 | oppccofval | ⊢ ( 𝜑 → ( 〈 𝑌 , 𝑌 〉 ( comp ‘ 𝑂 ) 𝑌 ) = tpos ( 〈 𝑌 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑌 ) ) |
| 18 | eqid | ⊢ ( oppg ‘ 𝑀 ) = ( oppg ‘ 𝑀 ) | |
| 19 | 18 | oppgmnd | ⊢ ( 𝑀 ∈ Mnd → ( oppg ‘ 𝑀 ) ∈ Mnd ) |
| 20 | 2 19 | syl | ⊢ ( 𝜑 → ( oppg ‘ 𝑀 ) ∈ Mnd ) |
| 21 | eqidd | ⊢ ( 𝜑 → ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) ) | |
| 22 | 3 20 21 5 5 5 7 | mndtcco | ⊢ ( 𝜑 → ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) = ( +g ‘ ( oppg ‘ 𝑀 ) ) ) |
| 23 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
| 24 | eqid | ⊢ ( +g ‘ ( oppg ‘ 𝑀 ) ) = ( +g ‘ ( oppg ‘ 𝑀 ) ) | |
| 25 | 23 18 24 | oppgplusfval | ⊢ ( +g ‘ ( oppg ‘ 𝑀 ) ) = tpos ( +g ‘ 𝑀 ) |
| 26 | 22 25 | eqtrdi | ⊢ ( 𝜑 → ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) = tpos ( +g ‘ 𝑀 ) ) |
| 27 | 15 17 26 | 3eqtr4rd | ⊢ ( 𝜑 → ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) = ( 〈 𝑌 , 𝑌 〉 ( comp ‘ 𝑂 ) 𝑌 ) ) |
| 28 | 8 | oveqd | ⊢ ( 𝜑 → ( 〈 𝑌 , 𝑌 〉 ∙ 𝑌 ) = ( 〈 𝑌 , 𝑌 〉 ( comp ‘ 𝑂 ) 𝑌 ) ) |
| 29 | 27 28 | eqtr4d | ⊢ ( 𝜑 → ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) = ( 〈 𝑌 , 𝑌 〉 ∙ 𝑌 ) ) |