This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the addition operation of an opposite group. (Contributed by Stefan O'Rear, 26-Aug-2015) (Revised by Fan Zheng, 26-Jun-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppgval.2 | ⊢ + = ( +g ‘ 𝑅 ) | |
| oppgval.3 | ⊢ 𝑂 = ( oppg ‘ 𝑅 ) | ||
| oppgplusfval.4 | ⊢ ✚ = ( +g ‘ 𝑂 ) | ||
| Assertion | oppgplusfval | ⊢ ✚ = tpos + |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppgval.2 | ⊢ + = ( +g ‘ 𝑅 ) | |
| 2 | oppgval.3 | ⊢ 𝑂 = ( oppg ‘ 𝑅 ) | |
| 3 | oppgplusfval.4 | ⊢ ✚ = ( +g ‘ 𝑂 ) | |
| 4 | 1 2 | oppgval | ⊢ 𝑂 = ( 𝑅 sSet 〈 ( +g ‘ ndx ) , tpos + 〉 ) |
| 5 | 4 | fveq2i | ⊢ ( +g ‘ 𝑂 ) = ( +g ‘ ( 𝑅 sSet 〈 ( +g ‘ ndx ) , tpos + 〉 ) ) |
| 6 | 1 | fvexi | ⊢ + ∈ V |
| 7 | 6 | tposex | ⊢ tpos + ∈ V |
| 8 | plusgid | ⊢ +g = Slot ( +g ‘ ndx ) | |
| 9 | 8 | setsid | ⊢ ( ( 𝑅 ∈ V ∧ tpos + ∈ V ) → tpos + = ( +g ‘ ( 𝑅 sSet 〈 ( +g ‘ ndx ) , tpos + 〉 ) ) ) |
| 10 | 7 9 | mpan2 | ⊢ ( 𝑅 ∈ V → tpos + = ( +g ‘ ( 𝑅 sSet 〈 ( +g ‘ ndx ) , tpos + 〉 ) ) ) |
| 11 | 5 10 | eqtr4id | ⊢ ( 𝑅 ∈ V → ( +g ‘ 𝑂 ) = tpos + ) |
| 12 | tpos0 | ⊢ tpos ∅ = ∅ | |
| 13 | 8 | str0 | ⊢ ∅ = ( +g ‘ ∅ ) |
| 14 | 12 13 | eqtr2i | ⊢ ( +g ‘ ∅ ) = tpos ∅ |
| 15 | reldmsets | ⊢ Rel dom sSet | |
| 16 | 15 | ovprc1 | ⊢ ( ¬ 𝑅 ∈ V → ( 𝑅 sSet 〈 ( +g ‘ ndx ) , tpos + 〉 ) = ∅ ) |
| 17 | 4 16 | eqtrid | ⊢ ( ¬ 𝑅 ∈ V → 𝑂 = ∅ ) |
| 18 | 17 | fveq2d | ⊢ ( ¬ 𝑅 ∈ V → ( +g ‘ 𝑂 ) = ( +g ‘ ∅ ) ) |
| 19 | fvprc | ⊢ ( ¬ 𝑅 ∈ V → ( +g ‘ 𝑅 ) = ∅ ) | |
| 20 | 1 19 | eqtrid | ⊢ ( ¬ 𝑅 ∈ V → + = ∅ ) |
| 21 | 20 | tposeqd | ⊢ ( ¬ 𝑅 ∈ V → tpos + = tpos ∅ ) |
| 22 | 14 18 21 | 3eqtr4a | ⊢ ( ¬ 𝑅 ∈ V → ( +g ‘ 𝑂 ) = tpos + ) |
| 23 | 11 22 | pm2.61i | ⊢ ( +g ‘ 𝑂 ) = tpos + |
| 24 | 3 23 | eqtri | ⊢ ✚ = tpos + |