This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converted opposite monoid has the same composition as that of the opposite category. Example 3.6(2) of Adamek p. 25. (Contributed by Zhi Wang, 22-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mndtccat.c | |- ( ph -> C = ( MndToCat ` M ) ) |
|
| mndtccat.m | |- ( ph -> M e. Mnd ) |
||
| oppgoppchom.d | |- ( ph -> D = ( MndToCat ` ( oppG ` M ) ) ) |
||
| oppgoppchom.o | |- O = ( oppCat ` C ) |
||
| oppgoppchom.x | |- ( ph -> X e. ( Base ` D ) ) |
||
| oppgoppchom.y | |- ( ph -> Y e. ( Base ` O ) ) |
||
| oppgoppcco.o | |- ( ph -> .x. = ( comp ` D ) ) |
||
| oppgoppcco.x | |- ( ph -> .xb = ( comp ` O ) ) |
||
| Assertion | oppgoppcco | |- ( ph -> ( <. X , X >. .x. X ) = ( <. Y , Y >. .xb Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndtccat.c | |- ( ph -> C = ( MndToCat ` M ) ) |
|
| 2 | mndtccat.m | |- ( ph -> M e. Mnd ) |
|
| 3 | oppgoppchom.d | |- ( ph -> D = ( MndToCat ` ( oppG ` M ) ) ) |
|
| 4 | oppgoppchom.o | |- O = ( oppCat ` C ) |
|
| 5 | oppgoppchom.x | |- ( ph -> X e. ( Base ` D ) ) |
|
| 6 | oppgoppchom.y | |- ( ph -> Y e. ( Base ` O ) ) |
|
| 7 | oppgoppcco.o | |- ( ph -> .x. = ( comp ` D ) ) |
|
| 8 | oppgoppcco.x | |- ( ph -> .xb = ( comp ` O ) ) |
|
| 9 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 10 | 4 9 | oppcbas | |- ( Base ` C ) = ( Base ` O ) |
| 11 | 10 | eqcomi | |- ( Base ` O ) = ( Base ` C ) |
| 12 | 11 | a1i | |- ( ph -> ( Base ` O ) = ( Base ` C ) ) |
| 13 | eqidd | |- ( ph -> ( comp ` C ) = ( comp ` C ) ) |
|
| 14 | 1 2 12 6 6 6 13 | mndtcco | |- ( ph -> ( <. Y , Y >. ( comp ` C ) Y ) = ( +g ` M ) ) |
| 15 | 14 | tposeqd | |- ( ph -> tpos ( <. Y , Y >. ( comp ` C ) Y ) = tpos ( +g ` M ) ) |
| 16 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 17 | 11 16 4 6 6 6 | oppccofval | |- ( ph -> ( <. Y , Y >. ( comp ` O ) Y ) = tpos ( <. Y , Y >. ( comp ` C ) Y ) ) |
| 18 | eqid | |- ( oppG ` M ) = ( oppG ` M ) |
|
| 19 | 18 | oppgmnd | |- ( M e. Mnd -> ( oppG ` M ) e. Mnd ) |
| 20 | 2 19 | syl | |- ( ph -> ( oppG ` M ) e. Mnd ) |
| 21 | eqidd | |- ( ph -> ( Base ` D ) = ( Base ` D ) ) |
|
| 22 | 3 20 21 5 5 5 7 | mndtcco | |- ( ph -> ( <. X , X >. .x. X ) = ( +g ` ( oppG ` M ) ) ) |
| 23 | eqid | |- ( +g ` M ) = ( +g ` M ) |
|
| 24 | eqid | |- ( +g ` ( oppG ` M ) ) = ( +g ` ( oppG ` M ) ) |
|
| 25 | 23 18 24 | oppgplusfval | |- ( +g ` ( oppG ` M ) ) = tpos ( +g ` M ) |
| 26 | 22 25 | eqtrdi | |- ( ph -> ( <. X , X >. .x. X ) = tpos ( +g ` M ) ) |
| 27 | 15 17 26 | 3eqtr4rd | |- ( ph -> ( <. X , X >. .x. X ) = ( <. Y , Y >. ( comp ` O ) Y ) ) |
| 28 | 8 | oveqd | |- ( ph -> ( <. Y , Y >. .xb Y ) = ( <. Y , Y >. ( comp ` O ) Y ) ) |
| 29 | 27 28 | eqtr4d | |- ( ph -> ( <. X , X >. .x. X ) = ( <. Y , Y >. .xb Y ) ) |