This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converted opposite monoid has the same composition as that of the opposite category. Example 3.6(2) of Adamek p. 25. (Contributed by Zhi Wang, 22-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mndtccat.c | ||
| mndtccat.m | |||
| oppgoppchom.d | |||
| oppgoppchom.o | |||
| oppgoppchom.x | |||
| oppgoppchom.y | |||
| oppgoppcco.o | |||
| oppgoppcco.x | |||
| Assertion | oppgoppcco |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndtccat.c | ||
| 2 | mndtccat.m | ||
| 3 | oppgoppchom.d | ||
| 4 | oppgoppchom.o | ||
| 5 | oppgoppchom.x | ||
| 6 | oppgoppchom.y | ||
| 7 | oppgoppcco.o | ||
| 8 | oppgoppcco.x | ||
| 9 | eqid | ||
| 10 | 4 9 | oppcbas | |
| 11 | 10 | eqcomi | |
| 12 | 11 | a1i | |
| 13 | eqidd | ||
| 14 | 1 2 12 6 6 6 13 | mndtcco | |
| 15 | 14 | tposeqd | |
| 16 | eqid | ||
| 17 | 11 16 4 6 6 6 | oppccofval | |
| 18 | eqid | ||
| 19 | 18 | oppgmnd | |
| 20 | 2 19 | syl | |
| 21 | eqidd | ||
| 22 | 3 20 21 5 5 5 7 | mndtcco | |
| 23 | eqid | ||
| 24 | eqid | ||
| 25 | 23 18 24 | oppgplusfval | |
| 26 | 22 25 | eqtrdi | |
| 27 | 15 17 26 | 3eqtr4rd | |
| 28 | 8 | oveqd | |
| 29 | 27 28 | eqtr4d |