This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converted opposite monoid has the same identity morphism as that of the opposite category. Example 3.6(2) of Adamek p. 25. (Contributed by Zhi Wang, 22-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mndtccat.c | ⊢ ( 𝜑 → 𝐶 = ( MndToCat ‘ 𝑀 ) ) | |
| mndtccat.m | ⊢ ( 𝜑 → 𝑀 ∈ Mnd ) | ||
| oppgoppchom.d | ⊢ ( 𝜑 → 𝐷 = ( MndToCat ‘ ( oppg ‘ 𝑀 ) ) ) | ||
| oppgoppchom.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | ||
| oppgoppchom.x | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐷 ) ) | ||
| oppgoppchom.y | ⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝑂 ) ) | ||
| Assertion | oppgoppcid | ⊢ ( 𝜑 → ( ( Id ‘ 𝐷 ) ‘ 𝑋 ) = ( ( Id ‘ 𝑂 ) ‘ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndtccat.c | ⊢ ( 𝜑 → 𝐶 = ( MndToCat ‘ 𝑀 ) ) | |
| 2 | mndtccat.m | ⊢ ( 𝜑 → 𝑀 ∈ Mnd ) | |
| 3 | oppgoppchom.d | ⊢ ( 𝜑 → 𝐷 = ( MndToCat ‘ ( oppg ‘ 𝑀 ) ) ) | |
| 4 | oppgoppchom.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| 5 | oppgoppchom.x | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐷 ) ) | |
| 6 | oppgoppchom.y | ⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝑂 ) ) | |
| 7 | eqid | ⊢ ( oppg ‘ 𝑀 ) = ( oppg ‘ 𝑀 ) | |
| 8 | eqid | ⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) | |
| 9 | 7 8 | oppgid | ⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ ( oppg ‘ 𝑀 ) ) |
| 10 | 9 | a1i | ⊢ ( 𝜑 → ( 0g ‘ 𝑀 ) = ( 0g ‘ ( oppg ‘ 𝑀 ) ) ) |
| 11 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 12 | 4 11 | oppcbas | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝑂 ) |
| 13 | 12 | eqcomi | ⊢ ( Base ‘ 𝑂 ) = ( Base ‘ 𝐶 ) |
| 14 | 13 | a1i | ⊢ ( 𝜑 → ( Base ‘ 𝑂 ) = ( Base ‘ 𝐶 ) ) |
| 15 | 1 2 | mndtccat | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 16 | eqid | ⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) | |
| 17 | 4 16 | oppcid | ⊢ ( 𝐶 ∈ Cat → ( Id ‘ 𝑂 ) = ( Id ‘ 𝐶 ) ) |
| 18 | 15 17 | syl | ⊢ ( 𝜑 → ( Id ‘ 𝑂 ) = ( Id ‘ 𝐶 ) ) |
| 19 | 1 2 14 6 18 | mndtcid | ⊢ ( 𝜑 → ( ( Id ‘ 𝑂 ) ‘ 𝑌 ) = ( 0g ‘ 𝑀 ) ) |
| 20 | 7 | oppgmnd | ⊢ ( 𝑀 ∈ Mnd → ( oppg ‘ 𝑀 ) ∈ Mnd ) |
| 21 | 2 20 | syl | ⊢ ( 𝜑 → ( oppg ‘ 𝑀 ) ∈ Mnd ) |
| 22 | eqidd | ⊢ ( 𝜑 → ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) ) | |
| 23 | eqidd | ⊢ ( 𝜑 → ( Id ‘ 𝐷 ) = ( Id ‘ 𝐷 ) ) | |
| 24 | 3 21 22 5 23 | mndtcid | ⊢ ( 𝜑 → ( ( Id ‘ 𝐷 ) ‘ 𝑋 ) = ( 0g ‘ ( oppg ‘ 𝑀 ) ) ) |
| 25 | 10 19 24 | 3eqtr4rd | ⊢ ( 𝜑 → ( ( Id ‘ 𝐷 ) ‘ 𝑋 ) = ( ( Id ‘ 𝑂 ) ‘ 𝑌 ) ) |