This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition in the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppcco.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| oppcco.c | ⊢ · = ( comp ‘ 𝐶 ) | ||
| oppcco.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | ||
| oppcco.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| oppcco.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| oppcco.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| Assertion | oppccofval | ⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝑂 ) 𝑍 ) = tpos ( 〈 𝑍 , 𝑌 〉 · 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcco.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | oppcco.c | ⊢ · = ( comp ‘ 𝐶 ) | |
| 3 | oppcco.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| 4 | oppcco.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | oppcco.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | oppcco.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 7 | elfvex | ⊢ ( 𝑋 ∈ ( Base ‘ 𝐶 ) → 𝐶 ∈ V ) | |
| 8 | 7 1 | eleq2s | ⊢ ( 𝑋 ∈ 𝐵 → 𝐶 ∈ V ) |
| 9 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 10 | 1 9 2 3 | oppcval | ⊢ ( 𝐶 ∈ V → 𝑂 = ( ( 𝐶 sSet 〈 ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝐶 ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 · ( 1st ‘ 𝑢 ) ) ) 〉 ) ) |
| 11 | 4 8 10 | 3syl | ⊢ ( 𝜑 → 𝑂 = ( ( 𝐶 sSet 〈 ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝐶 ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 · ( 1st ‘ 𝑢 ) ) ) 〉 ) ) |
| 12 | 11 | fveq2d | ⊢ ( 𝜑 → ( comp ‘ 𝑂 ) = ( comp ‘ ( ( 𝐶 sSet 〈 ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝐶 ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 · ( 1st ‘ 𝑢 ) ) ) 〉 ) ) ) |
| 13 | ovex | ⊢ ( 𝐶 sSet 〈 ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝐶 ) 〉 ) ∈ V | |
| 14 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 15 | 14 14 | xpex | ⊢ ( 𝐵 × 𝐵 ) ∈ V |
| 16 | 15 14 | mpoex | ⊢ ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 · ( 1st ‘ 𝑢 ) ) ) ∈ V |
| 17 | ccoid | ⊢ comp = Slot ( comp ‘ ndx ) | |
| 18 | 17 | setsid | ⊢ ( ( ( 𝐶 sSet 〈 ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝐶 ) 〉 ) ∈ V ∧ ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 · ( 1st ‘ 𝑢 ) ) ) ∈ V ) → ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 · ( 1st ‘ 𝑢 ) ) ) = ( comp ‘ ( ( 𝐶 sSet 〈 ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝐶 ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 · ( 1st ‘ 𝑢 ) ) ) 〉 ) ) ) |
| 19 | 13 16 18 | mp2an | ⊢ ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 · ( 1st ‘ 𝑢 ) ) ) = ( comp ‘ ( ( 𝐶 sSet 〈 ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝐶 ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 · ( 1st ‘ 𝑢 ) ) ) 〉 ) ) |
| 20 | 12 19 | eqtr4di | ⊢ ( 𝜑 → ( comp ‘ 𝑂 ) = ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 · ( 1st ‘ 𝑢 ) ) ) ) |
| 21 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑢 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → 𝑧 = 𝑍 ) | |
| 22 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑢 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → 𝑢 = 〈 𝑋 , 𝑌 〉 ) | |
| 23 | 22 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑢 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → ( 2nd ‘ 𝑢 ) = ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) ) |
| 24 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑢 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → 𝑌 ∈ 𝐵 ) |
| 25 | op2ndg | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) = 𝑌 ) | |
| 26 | 4 24 25 | syl2an2r | ⊢ ( ( 𝜑 ∧ ( 𝑢 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) = 𝑌 ) |
| 27 | 23 26 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑢 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → ( 2nd ‘ 𝑢 ) = 𝑌 ) |
| 28 | 21 27 | opeq12d | ⊢ ( ( 𝜑 ∧ ( 𝑢 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 = 〈 𝑍 , 𝑌 〉 ) |
| 29 | 22 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑢 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → ( 1st ‘ 𝑢 ) = ( 1st ‘ 〈 𝑋 , 𝑌 〉 ) ) |
| 30 | op1stg | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 1st ‘ 〈 𝑋 , 𝑌 〉 ) = 𝑋 ) | |
| 31 | 4 24 30 | syl2an2r | ⊢ ( ( 𝜑 ∧ ( 𝑢 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → ( 1st ‘ 〈 𝑋 , 𝑌 〉 ) = 𝑋 ) |
| 32 | 29 31 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑢 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → ( 1st ‘ 𝑢 ) = 𝑋 ) |
| 33 | 28 32 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑢 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 · ( 1st ‘ 𝑢 ) ) = ( 〈 𝑍 , 𝑌 〉 · 𝑋 ) ) |
| 34 | 33 | tposeqd | ⊢ ( ( 𝜑 ∧ ( 𝑢 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 · ( 1st ‘ 𝑢 ) ) = tpos ( 〈 𝑍 , 𝑌 〉 · 𝑋 ) ) |
| 35 | 4 5 | opelxpd | ⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ ( 𝐵 × 𝐵 ) ) |
| 36 | ovex | ⊢ ( 〈 𝑍 , 𝑌 〉 · 𝑋 ) ∈ V | |
| 37 | 36 | tposex | ⊢ tpos ( 〈 𝑍 , 𝑌 〉 · 𝑋 ) ∈ V |
| 38 | 37 | a1i | ⊢ ( 𝜑 → tpos ( 〈 𝑍 , 𝑌 〉 · 𝑋 ) ∈ V ) |
| 39 | 20 34 35 6 38 | ovmpod | ⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝑂 ) 𝑍 ) = tpos ( 〈 𝑍 , 𝑌 〉 · 𝑋 ) ) |