This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subgroup sum function (for a group or vector space). (Contributed by NM, 28-Jan-2014) (Revised by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmfval.v | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| lsmfval.a | ⊢ + = ( +g ‘ 𝐺 ) | ||
| lsmfval.s | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | ||
| Assertion | lsmfval | ⊢ ( 𝐺 ∈ 𝑉 → ⊕ = ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 + 𝑦 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmfval.v | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | lsmfval.a | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | lsmfval.s | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| 4 | elex | ⊢ ( 𝐺 ∈ 𝑉 → 𝐺 ∈ V ) | |
| 5 | fveq2 | ⊢ ( 𝑤 = 𝐺 → ( Base ‘ 𝑤 ) = ( Base ‘ 𝐺 ) ) | |
| 6 | 5 1 | eqtr4di | ⊢ ( 𝑤 = 𝐺 → ( Base ‘ 𝑤 ) = 𝐵 ) |
| 7 | 6 | pweqd | ⊢ ( 𝑤 = 𝐺 → 𝒫 ( Base ‘ 𝑤 ) = 𝒫 𝐵 ) |
| 8 | fveq2 | ⊢ ( 𝑤 = 𝐺 → ( +g ‘ 𝑤 ) = ( +g ‘ 𝐺 ) ) | |
| 9 | 8 2 | eqtr4di | ⊢ ( 𝑤 = 𝐺 → ( +g ‘ 𝑤 ) = + ) |
| 10 | 9 | oveqd | ⊢ ( 𝑤 = 𝐺 → ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) = ( 𝑥 + 𝑦 ) ) |
| 11 | 10 | mpoeq3dv | ⊢ ( 𝑤 = 𝐺 → ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) ) = ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 + 𝑦 ) ) ) |
| 12 | 11 | rneqd | ⊢ ( 𝑤 = 𝐺 → ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) ) = ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 + 𝑦 ) ) ) |
| 13 | 7 7 12 | mpoeq123dv | ⊢ ( 𝑤 = 𝐺 → ( 𝑡 ∈ 𝒫 ( Base ‘ 𝑤 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝑤 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) ) ) = ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 + 𝑦 ) ) ) ) |
| 14 | df-lsm | ⊢ LSSum = ( 𝑤 ∈ V ↦ ( 𝑡 ∈ 𝒫 ( Base ‘ 𝑤 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝑤 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) ) ) ) | |
| 15 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 16 | 15 | pwex | ⊢ 𝒫 𝐵 ∈ V |
| 17 | 16 16 | mpoex | ⊢ ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 + 𝑦 ) ) ) ∈ V |
| 18 | 13 14 17 | fvmpt | ⊢ ( 𝐺 ∈ V → ( LSSum ‘ 𝐺 ) = ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 + 𝑦 ) ) ) ) |
| 19 | 4 18 | syl | ⊢ ( 𝐺 ∈ 𝑉 → ( LSSum ‘ 𝐺 ) = ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 + 𝑦 ) ) ) ) |
| 20 | 3 19 | eqtrid | ⊢ ( 𝐺 ∈ 𝑉 → ⊕ = ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 + 𝑦 ) ) ) ) |