This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transposition of a two-argument mapping. (Contributed by Mario Carneiro, 10-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tposmpo.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) | |
| Assertion | tposmpo | ⊢ tpos 𝐹 = ( 𝑦 ∈ 𝐵 , 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tposmpo.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) | |
| 2 | df-mpo | ⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) } | |
| 3 | ancom | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ) | |
| 4 | 3 | anbi1i | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) ↔ ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 = 𝐶 ) ) |
| 5 | 4 | oprabbii | ⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) } = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 = 𝐶 ) } |
| 6 | 1 2 5 | 3eqtri | ⊢ 𝐹 = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 = 𝐶 ) } |
| 7 | 6 | tposoprab | ⊢ tpos 𝐹 = { 〈 〈 𝑦 , 𝑥 〉 , 𝑧 〉 ∣ ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 = 𝐶 ) } |
| 8 | df-mpo | ⊢ ( 𝑦 ∈ 𝐵 , 𝑥 ∈ 𝐴 ↦ 𝐶 ) = { 〈 〈 𝑦 , 𝑥 〉 , 𝑧 〉 ∣ ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 = 𝐶 ) } | |
| 9 | 7 8 | eqtr4i | ⊢ tpos 𝐹 = ( 𝑦 ∈ 𝐵 , 𝑥 ∈ 𝐴 ↦ 𝐶 ) |