This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Zero objects are zero in the opposite category. Remark 7.8 of Adamek p. 103. (Contributed by Zhi Wang, 27-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oppczeroo | ⊢ ( 𝐼 ∈ ( ZeroO ‘ 𝐶 ) ↔ 𝐼 ∈ ( ZeroO ‘ ( oppCat ‘ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zeroorcl | ⊢ ( 𝐼 ∈ ( ZeroO ‘ 𝐶 ) → 𝐶 ∈ Cat ) | |
| 2 | zeroorcl | ⊢ ( 𝐼 ∈ ( ZeroO ‘ ( oppCat ‘ 𝐶 ) ) → ( oppCat ‘ 𝐶 ) ∈ Cat ) | |
| 3 | eqid | ⊢ ( oppCat ‘ 𝐶 ) = ( oppCat ‘ 𝐶 ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 5 | 3 4 | oppcbas | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ ( oppCat ‘ 𝐶 ) ) |
| 6 | 5 | zeroo2 | ⊢ ( 𝐼 ∈ ( ZeroO ‘ ( oppCat ‘ 𝐶 ) ) → 𝐼 ∈ ( Base ‘ 𝐶 ) ) |
| 7 | elfvex | ⊢ ( 𝐼 ∈ ( Base ‘ 𝐶 ) → 𝐶 ∈ V ) | |
| 8 | id | ⊢ ( 𝐶 ∈ V → 𝐶 ∈ V ) | |
| 9 | 3 8 | oppccatb | ⊢ ( 𝐶 ∈ V → ( 𝐶 ∈ Cat ↔ ( oppCat ‘ 𝐶 ) ∈ Cat ) ) |
| 10 | 6 7 9 | 3syl | ⊢ ( 𝐼 ∈ ( ZeroO ‘ ( oppCat ‘ 𝐶 ) ) → ( 𝐶 ∈ Cat ↔ ( oppCat ‘ 𝐶 ) ∈ Cat ) ) |
| 11 | 2 10 | mpbird | ⊢ ( 𝐼 ∈ ( ZeroO ‘ ( oppCat ‘ 𝐶 ) ) → 𝐶 ∈ Cat ) |
| 12 | oppcinito | ⊢ ( 𝑐 ∈ ( InitO ‘ 𝐶 ) ↔ 𝑐 ∈ ( TermO ‘ ( oppCat ‘ 𝐶 ) ) ) | |
| 13 | 12 | eqriv | ⊢ ( InitO ‘ 𝐶 ) = ( TermO ‘ ( oppCat ‘ 𝐶 ) ) |
| 14 | oppctermo | ⊢ ( 𝑐 ∈ ( TermO ‘ 𝐶 ) ↔ 𝑐 ∈ ( InitO ‘ ( oppCat ‘ 𝐶 ) ) ) | |
| 15 | 14 | eqriv | ⊢ ( TermO ‘ 𝐶 ) = ( InitO ‘ ( oppCat ‘ 𝐶 ) ) |
| 16 | 13 15 | ineq12i | ⊢ ( ( InitO ‘ 𝐶 ) ∩ ( TermO ‘ 𝐶 ) ) = ( ( TermO ‘ ( oppCat ‘ 𝐶 ) ) ∩ ( InitO ‘ ( oppCat ‘ 𝐶 ) ) ) |
| 17 | incom | ⊢ ( ( TermO ‘ ( oppCat ‘ 𝐶 ) ) ∩ ( InitO ‘ ( oppCat ‘ 𝐶 ) ) ) = ( ( InitO ‘ ( oppCat ‘ 𝐶 ) ) ∩ ( TermO ‘ ( oppCat ‘ 𝐶 ) ) ) | |
| 18 | 16 17 | eqtri | ⊢ ( ( InitO ‘ 𝐶 ) ∩ ( TermO ‘ 𝐶 ) ) = ( ( InitO ‘ ( oppCat ‘ 𝐶 ) ) ∩ ( TermO ‘ ( oppCat ‘ 𝐶 ) ) ) |
| 19 | id | ⊢ ( 𝐶 ∈ Cat → 𝐶 ∈ Cat ) | |
| 20 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 21 | 19 4 20 | zerooval | ⊢ ( 𝐶 ∈ Cat → ( ZeroO ‘ 𝐶 ) = ( ( InitO ‘ 𝐶 ) ∩ ( TermO ‘ 𝐶 ) ) ) |
| 22 | 3 | oppccat | ⊢ ( 𝐶 ∈ Cat → ( oppCat ‘ 𝐶 ) ∈ Cat ) |
| 23 | eqid | ⊢ ( Hom ‘ ( oppCat ‘ 𝐶 ) ) = ( Hom ‘ ( oppCat ‘ 𝐶 ) ) | |
| 24 | 22 5 23 | zerooval | ⊢ ( 𝐶 ∈ Cat → ( ZeroO ‘ ( oppCat ‘ 𝐶 ) ) = ( ( InitO ‘ ( oppCat ‘ 𝐶 ) ) ∩ ( TermO ‘ ( oppCat ‘ 𝐶 ) ) ) ) |
| 25 | 18 21 24 | 3eqtr4a | ⊢ ( 𝐶 ∈ Cat → ( ZeroO ‘ 𝐶 ) = ( ZeroO ‘ ( oppCat ‘ 𝐶 ) ) ) |
| 26 | 25 | eleq2d | ⊢ ( 𝐶 ∈ Cat → ( 𝐼 ∈ ( ZeroO ‘ 𝐶 ) ↔ 𝐼 ∈ ( ZeroO ‘ ( oppCat ‘ 𝐶 ) ) ) ) |
| 27 | 1 11 26 | pm5.21nii | ⊢ ( 𝐼 ∈ ( ZeroO ‘ 𝐶 ) ↔ 𝐼 ∈ ( ZeroO ‘ ( oppCat ‘ 𝐶 ) ) ) |