This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An opposite category is a category. (Contributed by Zhi Wang, 23-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppccatb.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| oppccatb.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | ||
| Assertion | oppccatb | ⊢ ( 𝜑 → ( 𝐶 ∈ Cat ↔ 𝑂 ∈ Cat ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppccatb.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| 2 | oppccatb.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| 3 | 1 | oppccat | ⊢ ( 𝐶 ∈ Cat → 𝑂 ∈ Cat ) |
| 4 | eqid | ⊢ ( oppCat ‘ 𝑂 ) = ( oppCat ‘ 𝑂 ) | |
| 5 | 4 | oppccat | ⊢ ( 𝑂 ∈ Cat → ( oppCat ‘ 𝑂 ) ∈ Cat ) |
| 6 | 1 | 2oppchomf | ⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ ( oppCat ‘ 𝑂 ) ) |
| 7 | 6 | a1i | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ ( oppCat ‘ 𝑂 ) ) ) |
| 8 | 1 | 2oppccomf | ⊢ ( compf ‘ 𝐶 ) = ( compf ‘ ( oppCat ‘ 𝑂 ) ) |
| 9 | 8 | a1i | ⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ ( oppCat ‘ 𝑂 ) ) ) |
| 10 | fvexd | ⊢ ( 𝜑 → ( oppCat ‘ 𝑂 ) ∈ V ) | |
| 11 | 7 9 2 10 | catpropd | ⊢ ( 𝜑 → ( 𝐶 ∈ Cat ↔ ( oppCat ‘ 𝑂 ) ∈ Cat ) ) |
| 12 | 5 11 | imbitrrid | ⊢ ( 𝜑 → ( 𝑂 ∈ Cat → 𝐶 ∈ Cat ) ) |
| 13 | 3 12 | impbid2 | ⊢ ( 𝜑 → ( 𝐶 ∈ Cat ↔ 𝑂 ∈ Cat ) ) |