This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Initial objects are terminal in the opposite category. (Contributed by Zhi Wang, 23-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oppcinito | ⊢ ( 𝐼 ∈ ( InitO ‘ 𝐶 ) ↔ 𝐼 ∈ ( TermO ‘ ( oppCat ‘ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | initorcl | ⊢ ( 𝐼 ∈ ( InitO ‘ 𝐶 ) → 𝐶 ∈ Cat ) | |
| 2 | termorcl | ⊢ ( 𝐼 ∈ ( TermO ‘ ( oppCat ‘ 𝐶 ) ) → ( oppCat ‘ 𝐶 ) ∈ Cat ) | |
| 3 | eqid | ⊢ ( oppCat ‘ 𝐶 ) = ( oppCat ‘ 𝐶 ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 5 | 3 4 | oppcbas | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ ( oppCat ‘ 𝐶 ) ) |
| 6 | 5 | termoo2 | ⊢ ( 𝐼 ∈ ( TermO ‘ ( oppCat ‘ 𝐶 ) ) → 𝐼 ∈ ( Base ‘ 𝐶 ) ) |
| 7 | elfvex | ⊢ ( 𝐼 ∈ ( Base ‘ 𝐶 ) → 𝐶 ∈ V ) | |
| 8 | id | ⊢ ( 𝐶 ∈ V → 𝐶 ∈ V ) | |
| 9 | 3 8 | oppccatb | ⊢ ( 𝐶 ∈ V → ( 𝐶 ∈ Cat ↔ ( oppCat ‘ 𝐶 ) ∈ Cat ) ) |
| 10 | 6 7 9 | 3syl | ⊢ ( 𝐼 ∈ ( TermO ‘ ( oppCat ‘ 𝐶 ) ) → ( 𝐶 ∈ Cat ↔ ( oppCat ‘ 𝐶 ) ∈ Cat ) ) |
| 11 | 2 10 | mpbird | ⊢ ( 𝐼 ∈ ( TermO ‘ ( oppCat ‘ 𝐶 ) ) → 𝐶 ∈ Cat ) |
| 12 | 2fveq3 | ⊢ ( 𝑐 = 𝐶 → ( TermO ‘ ( oppCat ‘ 𝑐 ) ) = ( TermO ‘ ( oppCat ‘ 𝐶 ) ) ) | |
| 13 | dfinito2 | ⊢ InitO = ( 𝑐 ∈ Cat ↦ ( TermO ‘ ( oppCat ‘ 𝑐 ) ) ) | |
| 14 | fvex | ⊢ ( TermO ‘ ( oppCat ‘ 𝐶 ) ) ∈ V | |
| 15 | 12 13 14 | fvmpt | ⊢ ( 𝐶 ∈ Cat → ( InitO ‘ 𝐶 ) = ( TermO ‘ ( oppCat ‘ 𝐶 ) ) ) |
| 16 | 15 | eleq2d | ⊢ ( 𝐶 ∈ Cat → ( 𝐼 ∈ ( InitO ‘ 𝐶 ) ↔ 𝐼 ∈ ( TermO ‘ ( oppCat ‘ 𝐶 ) ) ) ) |
| 17 | 1 11 16 | pm5.21nii | ⊢ ( 𝐼 ∈ ( InitO ‘ 𝐶 ) ↔ 𝐼 ∈ ( TermO ‘ ( oppCat ‘ 𝐶 ) ) ) |