This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the zero object function, i.e. the set of all zero objects of a category. (Contributed by AV, 3-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | initoval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| initoval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| initoval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| Assertion | zerooval | ⊢ ( 𝜑 → ( ZeroO ‘ 𝐶 ) = ( ( InitO ‘ 𝐶 ) ∩ ( TermO ‘ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | initoval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 2 | initoval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | initoval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 4 | df-zeroo | ⊢ ZeroO = ( 𝑐 ∈ Cat ↦ ( ( InitO ‘ 𝑐 ) ∩ ( TermO ‘ 𝑐 ) ) ) | |
| 5 | fveq2 | ⊢ ( 𝑐 = 𝐶 → ( InitO ‘ 𝑐 ) = ( InitO ‘ 𝐶 ) ) | |
| 6 | fveq2 | ⊢ ( 𝑐 = 𝐶 → ( TermO ‘ 𝑐 ) = ( TermO ‘ 𝐶 ) ) | |
| 7 | 5 6 | ineq12d | ⊢ ( 𝑐 = 𝐶 → ( ( InitO ‘ 𝑐 ) ∩ ( TermO ‘ 𝑐 ) ) = ( ( InitO ‘ 𝐶 ) ∩ ( TermO ‘ 𝐶 ) ) ) |
| 8 | fvex | ⊢ ( InitO ‘ 𝐶 ) ∈ V | |
| 9 | 8 | inex1 | ⊢ ( ( InitO ‘ 𝐶 ) ∩ ( TermO ‘ 𝐶 ) ) ∈ V |
| 10 | 9 | a1i | ⊢ ( 𝜑 → ( ( InitO ‘ 𝐶 ) ∩ ( TermO ‘ 𝐶 ) ) ∈ V ) |
| 11 | 4 7 1 10 | fvmptd3 | ⊢ ( 𝜑 → ( ZeroO ‘ 𝐶 ) = ( ( InitO ‘ 𝐶 ) ∩ ( TermO ‘ 𝐶 ) ) ) |