This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Zero objects are zero in the opposite category. Remark 7.8 of Adamek p. 103. (Contributed by Zhi Wang, 27-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oppczeroo | |- ( I e. ( ZeroO ` C ) <-> I e. ( ZeroO ` ( oppCat ` C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zeroorcl | |- ( I e. ( ZeroO ` C ) -> C e. Cat ) |
|
| 2 | zeroorcl | |- ( I e. ( ZeroO ` ( oppCat ` C ) ) -> ( oppCat ` C ) e. Cat ) |
|
| 3 | eqid | |- ( oppCat ` C ) = ( oppCat ` C ) |
|
| 4 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 5 | 3 4 | oppcbas | |- ( Base ` C ) = ( Base ` ( oppCat ` C ) ) |
| 6 | 5 | zeroo2 | |- ( I e. ( ZeroO ` ( oppCat ` C ) ) -> I e. ( Base ` C ) ) |
| 7 | elfvex | |- ( I e. ( Base ` C ) -> C e. _V ) |
|
| 8 | id | |- ( C e. _V -> C e. _V ) |
|
| 9 | 3 8 | oppccatb | |- ( C e. _V -> ( C e. Cat <-> ( oppCat ` C ) e. Cat ) ) |
| 10 | 6 7 9 | 3syl | |- ( I e. ( ZeroO ` ( oppCat ` C ) ) -> ( C e. Cat <-> ( oppCat ` C ) e. Cat ) ) |
| 11 | 2 10 | mpbird | |- ( I e. ( ZeroO ` ( oppCat ` C ) ) -> C e. Cat ) |
| 12 | oppcinito | |- ( c e. ( InitO ` C ) <-> c e. ( TermO ` ( oppCat ` C ) ) ) |
|
| 13 | 12 | eqriv | |- ( InitO ` C ) = ( TermO ` ( oppCat ` C ) ) |
| 14 | oppctermo | |- ( c e. ( TermO ` C ) <-> c e. ( InitO ` ( oppCat ` C ) ) ) |
|
| 15 | 14 | eqriv | |- ( TermO ` C ) = ( InitO ` ( oppCat ` C ) ) |
| 16 | 13 15 | ineq12i | |- ( ( InitO ` C ) i^i ( TermO ` C ) ) = ( ( TermO ` ( oppCat ` C ) ) i^i ( InitO ` ( oppCat ` C ) ) ) |
| 17 | incom | |- ( ( TermO ` ( oppCat ` C ) ) i^i ( InitO ` ( oppCat ` C ) ) ) = ( ( InitO ` ( oppCat ` C ) ) i^i ( TermO ` ( oppCat ` C ) ) ) |
|
| 18 | 16 17 | eqtri | |- ( ( InitO ` C ) i^i ( TermO ` C ) ) = ( ( InitO ` ( oppCat ` C ) ) i^i ( TermO ` ( oppCat ` C ) ) ) |
| 19 | id | |- ( C e. Cat -> C e. Cat ) |
|
| 20 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 21 | 19 4 20 | zerooval | |- ( C e. Cat -> ( ZeroO ` C ) = ( ( InitO ` C ) i^i ( TermO ` C ) ) ) |
| 22 | 3 | oppccat | |- ( C e. Cat -> ( oppCat ` C ) e. Cat ) |
| 23 | eqid | |- ( Hom ` ( oppCat ` C ) ) = ( Hom ` ( oppCat ` C ) ) |
|
| 24 | 22 5 23 | zerooval | |- ( C e. Cat -> ( ZeroO ` ( oppCat ` C ) ) = ( ( InitO ` ( oppCat ` C ) ) i^i ( TermO ` ( oppCat ` C ) ) ) ) |
| 25 | 18 21 24 | 3eqtr4a | |- ( C e. Cat -> ( ZeroO ` C ) = ( ZeroO ` ( oppCat ` C ) ) ) |
| 26 | 25 | eleq2d | |- ( C e. Cat -> ( I e. ( ZeroO ` C ) <-> I e. ( ZeroO ` ( oppCat ` C ) ) ) ) |
| 27 | 1 11 26 | pm5.21nii | |- ( I e. ( ZeroO ` C ) <-> I e. ( ZeroO ` ( oppCat ` C ) ) ) |