This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The universal pair <. X , M >. from a functor to an object is universal from an object to a functor in the opposite category. (Contributed by Zhi Wang, 24-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppcup.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| oppcup.c | ⊢ 𝐶 = ( Base ‘ 𝐸 ) | ||
| oppcup.h | ⊢ 𝐻 = ( Hom ‘ 𝐷 ) | ||
| oppcup.j | ⊢ 𝐽 = ( Hom ‘ 𝐸 ) | ||
| oppcup.xb | ⊢ ∙ = ( comp ‘ 𝐸 ) | ||
| oppcup.w | ⊢ ( 𝜑 → 𝑊 ∈ 𝐶 ) | ||
| oppcup.f | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) | ||
| oppcup.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| oppcup.m | ⊢ ( 𝜑 → 𝑀 ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 𝑊 ) ) | ||
| oppcup.o | ⊢ 𝑂 = ( oppCat ‘ 𝐷 ) | ||
| oppcup.p | ⊢ 𝑃 = ( oppCat ‘ 𝐸 ) | ||
| Assertion | oppcup | ⊢ ( 𝜑 → ( 𝑋 ( 〈 𝐹 , tpos 𝐺 〉 ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀 ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( ( 𝐹 ‘ 𝑦 ) 𝐽 𝑊 ) ∃! 𝑘 ∈ ( 𝑦 𝐻 𝑋 ) 𝑔 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑋 ) 〉 ∙ 𝑊 ) ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcup.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 2 | oppcup.c | ⊢ 𝐶 = ( Base ‘ 𝐸 ) | |
| 3 | oppcup.h | ⊢ 𝐻 = ( Hom ‘ 𝐷 ) | |
| 4 | oppcup.j | ⊢ 𝐽 = ( Hom ‘ 𝐸 ) | |
| 5 | oppcup.xb | ⊢ ∙ = ( comp ‘ 𝐸 ) | |
| 6 | oppcup.w | ⊢ ( 𝜑 → 𝑊 ∈ 𝐶 ) | |
| 7 | oppcup.f | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) | |
| 8 | oppcup.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 9 | oppcup.m | ⊢ ( 𝜑 → 𝑀 ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 𝑊 ) ) | |
| 10 | oppcup.o | ⊢ 𝑂 = ( oppCat ‘ 𝐷 ) | |
| 11 | oppcup.p | ⊢ 𝑃 = ( oppCat ‘ 𝐸 ) | |
| 12 | 10 1 | oppcbas | ⊢ 𝐵 = ( Base ‘ 𝑂 ) |
| 13 | 11 2 | oppcbas | ⊢ 𝐶 = ( Base ‘ 𝑃 ) |
| 14 | eqid | ⊢ ( Hom ‘ 𝑂 ) = ( Hom ‘ 𝑂 ) | |
| 15 | eqid | ⊢ ( Hom ‘ 𝑃 ) = ( Hom ‘ 𝑃 ) | |
| 16 | eqid | ⊢ ( comp ‘ 𝑃 ) = ( comp ‘ 𝑃 ) | |
| 17 | 10 11 7 | funcoppc | ⊢ ( 𝜑 → 𝐹 ( 𝑂 Func 𝑃 ) tpos 𝐺 ) |
| 18 | 4 11 | oppchom | ⊢ ( 𝑊 ( Hom ‘ 𝑃 ) ( 𝐹 ‘ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) 𝐽 𝑊 ) |
| 19 | 9 18 | eleqtrrdi | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝑊 ( Hom ‘ 𝑃 ) ( 𝐹 ‘ 𝑋 ) ) ) |
| 20 | 12 13 14 15 16 6 17 8 19 | isup | ⊢ ( 𝜑 → ( 𝑋 ( 〈 𝐹 , tpos 𝐺 〉 ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀 ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑊 ( Hom ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝑂 ) 𝑦 ) 𝑔 = ( ( ( 𝑋 tpos 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) ) ) |
| 21 | 4 11 | oppchom | ⊢ ( 𝑊 ( Hom ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑦 ) 𝐽 𝑊 ) |
| 22 | 21 | a1i | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑊 ( Hom ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑦 ) 𝐽 𝑊 ) ) |
| 23 | 3 10 | oppchom | ⊢ ( 𝑋 ( Hom ‘ 𝑂 ) 𝑦 ) = ( 𝑦 𝐻 𝑋 ) |
| 24 | 23 | a1i | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑋 ( Hom ‘ 𝑂 ) 𝑦 ) = ( 𝑦 𝐻 𝑋 ) ) |
| 25 | ovtpos | ⊢ ( 𝑋 tpos 𝐺 𝑦 ) = ( 𝑦 𝐺 𝑋 ) | |
| 26 | 25 | fveq1i | ⊢ ( ( 𝑋 tpos 𝐺 𝑦 ) ‘ 𝑘 ) = ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) |
| 27 | 26 | oveq1i | ⊢ ( ( ( 𝑋 tpos 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) = ( ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) |
| 28 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝑊 ∈ 𝐶 ) |
| 29 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
| 30 | 1 2 29 | funcf1 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝐹 : 𝐵 ⟶ 𝐶 ) |
| 31 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
| 32 | 30 31 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝐶 ) |
| 33 | simpr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) | |
| 34 | 30 33 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝐶 ) |
| 35 | 2 5 11 28 32 34 | oppcco | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑋 ) 〉 ∙ 𝑊 ) ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ) ) |
| 36 | 27 35 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ( ( 𝑋 tpos 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑋 ) 〉 ∙ 𝑊 ) ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ) ) |
| 37 | 36 | eqeq2d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑔 = ( ( ( 𝑋 tpos 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) ↔ 𝑔 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑋 ) 〉 ∙ 𝑊 ) ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ) ) ) |
| 38 | 24 37 | reueqbidv | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ∃! 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝑂 ) 𝑦 ) 𝑔 = ( ( ( 𝑋 tpos 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) ↔ ∃! 𝑘 ∈ ( 𝑦 𝐻 𝑋 ) 𝑔 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑋 ) 〉 ∙ 𝑊 ) ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ) ) ) |
| 39 | 22 38 | raleqbidv | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ∀ 𝑔 ∈ ( 𝑊 ( Hom ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝑂 ) 𝑦 ) 𝑔 = ( ( ( 𝑋 tpos 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) ↔ ∀ 𝑔 ∈ ( ( 𝐹 ‘ 𝑦 ) 𝐽 𝑊 ) ∃! 𝑘 ∈ ( 𝑦 𝐻 𝑋 ) 𝑔 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑋 ) 〉 ∙ 𝑊 ) ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ) ) ) |
| 40 | 39 | ralbidva | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑊 ( Hom ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝑂 ) 𝑦 ) 𝑔 = ( ( ( 𝑋 tpos 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( ( 𝐹 ‘ 𝑦 ) 𝐽 𝑊 ) ∃! 𝑘 ∈ ( 𝑦 𝐻 𝑋 ) 𝑔 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑋 ) 〉 ∙ 𝑊 ) ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ) ) ) |
| 41 | 20 40 | bitrd | ⊢ ( 𝜑 → ( 𝑋 ( 〈 𝐹 , tpos 𝐺 〉 ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀 ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( ( 𝐹 ‘ 𝑦 ) 𝐽 𝑊 ) ∃! 𝑘 ∈ ( 𝑦 𝐻 𝑋 ) 𝑔 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑋 ) 〉 ∙ 𝑊 ) ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ) ) ) |