This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The universal pair <. X , M >. from a functor to an object is universal from an object to a functor in the opposite category. (Contributed by Zhi Wang, 24-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppcup.b | |- B = ( Base ` D ) |
|
| oppcup.c | |- C = ( Base ` E ) |
||
| oppcup.h | |- H = ( Hom ` D ) |
||
| oppcup.j | |- J = ( Hom ` E ) |
||
| oppcup.xb | |- .xb = ( comp ` E ) |
||
| oppcup.w | |- ( ph -> W e. C ) |
||
| oppcup.f | |- ( ph -> F ( D Func E ) G ) |
||
| oppcup.x | |- ( ph -> X e. B ) |
||
| oppcup.m | |- ( ph -> M e. ( ( F ` X ) J W ) ) |
||
| oppcup.o | |- O = ( oppCat ` D ) |
||
| oppcup.p | |- P = ( oppCat ` E ) |
||
| Assertion | oppcup | |- ( ph -> ( X ( <. F , tpos G >. ( O UP P ) W ) M <-> A. y e. B A. g e. ( ( F ` y ) J W ) E! k e. ( y H X ) g = ( M ( <. ( F ` y ) , ( F ` X ) >. .xb W ) ( ( y G X ) ` k ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcup.b | |- B = ( Base ` D ) |
|
| 2 | oppcup.c | |- C = ( Base ` E ) |
|
| 3 | oppcup.h | |- H = ( Hom ` D ) |
|
| 4 | oppcup.j | |- J = ( Hom ` E ) |
|
| 5 | oppcup.xb | |- .xb = ( comp ` E ) |
|
| 6 | oppcup.w | |- ( ph -> W e. C ) |
|
| 7 | oppcup.f | |- ( ph -> F ( D Func E ) G ) |
|
| 8 | oppcup.x | |- ( ph -> X e. B ) |
|
| 9 | oppcup.m | |- ( ph -> M e. ( ( F ` X ) J W ) ) |
|
| 10 | oppcup.o | |- O = ( oppCat ` D ) |
|
| 11 | oppcup.p | |- P = ( oppCat ` E ) |
|
| 12 | 10 1 | oppcbas | |- B = ( Base ` O ) |
| 13 | 11 2 | oppcbas | |- C = ( Base ` P ) |
| 14 | eqid | |- ( Hom ` O ) = ( Hom ` O ) |
|
| 15 | eqid | |- ( Hom ` P ) = ( Hom ` P ) |
|
| 16 | eqid | |- ( comp ` P ) = ( comp ` P ) |
|
| 17 | 10 11 7 | funcoppc | |- ( ph -> F ( O Func P ) tpos G ) |
| 18 | 4 11 | oppchom | |- ( W ( Hom ` P ) ( F ` X ) ) = ( ( F ` X ) J W ) |
| 19 | 9 18 | eleqtrrdi | |- ( ph -> M e. ( W ( Hom ` P ) ( F ` X ) ) ) |
| 20 | 12 13 14 15 16 6 17 8 19 | isup | |- ( ph -> ( X ( <. F , tpos G >. ( O UP P ) W ) M <-> A. y e. B A. g e. ( W ( Hom ` P ) ( F ` y ) ) E! k e. ( X ( Hom ` O ) y ) g = ( ( ( X tpos G y ) ` k ) ( <. W , ( F ` X ) >. ( comp ` P ) ( F ` y ) ) M ) ) ) |
| 21 | 4 11 | oppchom | |- ( W ( Hom ` P ) ( F ` y ) ) = ( ( F ` y ) J W ) |
| 22 | 21 | a1i | |- ( ( ph /\ y e. B ) -> ( W ( Hom ` P ) ( F ` y ) ) = ( ( F ` y ) J W ) ) |
| 23 | 3 10 | oppchom | |- ( X ( Hom ` O ) y ) = ( y H X ) |
| 24 | 23 | a1i | |- ( ( ph /\ y e. B ) -> ( X ( Hom ` O ) y ) = ( y H X ) ) |
| 25 | ovtpos | |- ( X tpos G y ) = ( y G X ) |
|
| 26 | 25 | fveq1i | |- ( ( X tpos G y ) ` k ) = ( ( y G X ) ` k ) |
| 27 | 26 | oveq1i | |- ( ( ( X tpos G y ) ` k ) ( <. W , ( F ` X ) >. ( comp ` P ) ( F ` y ) ) M ) = ( ( ( y G X ) ` k ) ( <. W , ( F ` X ) >. ( comp ` P ) ( F ` y ) ) M ) |
| 28 | 6 | adantr | |- ( ( ph /\ y e. B ) -> W e. C ) |
| 29 | 7 | adantr | |- ( ( ph /\ y e. B ) -> F ( D Func E ) G ) |
| 30 | 1 2 29 | funcf1 | |- ( ( ph /\ y e. B ) -> F : B --> C ) |
| 31 | 8 | adantr | |- ( ( ph /\ y e. B ) -> X e. B ) |
| 32 | 30 31 | ffvelcdmd | |- ( ( ph /\ y e. B ) -> ( F ` X ) e. C ) |
| 33 | simpr | |- ( ( ph /\ y e. B ) -> y e. B ) |
|
| 34 | 30 33 | ffvelcdmd | |- ( ( ph /\ y e. B ) -> ( F ` y ) e. C ) |
| 35 | 2 5 11 28 32 34 | oppcco | |- ( ( ph /\ y e. B ) -> ( ( ( y G X ) ` k ) ( <. W , ( F ` X ) >. ( comp ` P ) ( F ` y ) ) M ) = ( M ( <. ( F ` y ) , ( F ` X ) >. .xb W ) ( ( y G X ) ` k ) ) ) |
| 36 | 27 35 | eqtrid | |- ( ( ph /\ y e. B ) -> ( ( ( X tpos G y ) ` k ) ( <. W , ( F ` X ) >. ( comp ` P ) ( F ` y ) ) M ) = ( M ( <. ( F ` y ) , ( F ` X ) >. .xb W ) ( ( y G X ) ` k ) ) ) |
| 37 | 36 | eqeq2d | |- ( ( ph /\ y e. B ) -> ( g = ( ( ( X tpos G y ) ` k ) ( <. W , ( F ` X ) >. ( comp ` P ) ( F ` y ) ) M ) <-> g = ( M ( <. ( F ` y ) , ( F ` X ) >. .xb W ) ( ( y G X ) ` k ) ) ) ) |
| 38 | 24 37 | reueqbidv | |- ( ( ph /\ y e. B ) -> ( E! k e. ( X ( Hom ` O ) y ) g = ( ( ( X tpos G y ) ` k ) ( <. W , ( F ` X ) >. ( comp ` P ) ( F ` y ) ) M ) <-> E! k e. ( y H X ) g = ( M ( <. ( F ` y ) , ( F ` X ) >. .xb W ) ( ( y G X ) ` k ) ) ) ) |
| 39 | 22 38 | raleqbidv | |- ( ( ph /\ y e. B ) -> ( A. g e. ( W ( Hom ` P ) ( F ` y ) ) E! k e. ( X ( Hom ` O ) y ) g = ( ( ( X tpos G y ) ` k ) ( <. W , ( F ` X ) >. ( comp ` P ) ( F ` y ) ) M ) <-> A. g e. ( ( F ` y ) J W ) E! k e. ( y H X ) g = ( M ( <. ( F ` y ) , ( F ` X ) >. .xb W ) ( ( y G X ) ` k ) ) ) ) |
| 40 | 39 | ralbidva | |- ( ph -> ( A. y e. B A. g e. ( W ( Hom ` P ) ( F ` y ) ) E! k e. ( X ( Hom ` O ) y ) g = ( ( ( X tpos G y ) ` k ) ( <. W , ( F ` X ) >. ( comp ` P ) ( F ` y ) ) M ) <-> A. y e. B A. g e. ( ( F ` y ) J W ) E! k e. ( y H X ) g = ( M ( <. ( F ` y ) , ( F ` X ) >. .xb W ) ( ( y G X ) ` k ) ) ) ) |
| 41 | 20 40 | bitrd | |- ( ph -> ( X ( <. F , tpos G >. ( O UP P ) W ) M <-> A. y e. B A. g e. ( ( F ` y ) J W ) E! k e. ( y H X ) g = ( M ( <. ( F ` y ) , ( F ` X ) >. .xb W ) ( ( y G X ) ` k ) ) ) ) |