This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The universal property for the universal pair <. X , M >. from a functor to an object, expressed explicitly. (Contributed by Zhi Wang, 4-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppcup2.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| oppcup2.h | ⊢ 𝐻 = ( Hom ‘ 𝐷 ) | ||
| oppcup2.j | ⊢ 𝐽 = ( Hom ‘ 𝐸 ) | ||
| oppcup2.xb | ⊢ ∙ = ( comp ‘ 𝐸 ) | ||
| oppcup2.o | ⊢ 𝑂 = ( oppCat ‘ 𝐷 ) | ||
| oppcup2.p | ⊢ 𝑃 = ( oppCat ‘ 𝐸 ) | ||
| oppcup2.f | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) | ||
| oppcup2.x | ⊢ ( 𝜑 → 𝑋 ( 〈 𝐹 , tpos 𝐺 〉 ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀 ) | ||
| Assertion | oppcup2 | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( ( 𝐹 ‘ 𝑦 ) 𝐽 𝑊 ) ∃! 𝑘 ∈ ( 𝑦 𝐻 𝑋 ) 𝑔 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑋 ) 〉 ∙ 𝑊 ) ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcup2.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 2 | oppcup2.h | ⊢ 𝐻 = ( Hom ‘ 𝐷 ) | |
| 3 | oppcup2.j | ⊢ 𝐽 = ( Hom ‘ 𝐸 ) | |
| 4 | oppcup2.xb | ⊢ ∙ = ( comp ‘ 𝐸 ) | |
| 5 | oppcup2.o | ⊢ 𝑂 = ( oppCat ‘ 𝐷 ) | |
| 6 | oppcup2.p | ⊢ 𝑃 = ( oppCat ‘ 𝐸 ) | |
| 7 | oppcup2.f | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) | |
| 8 | oppcup2.x | ⊢ ( 𝜑 → 𝑋 ( 〈 𝐹 , tpos 𝐺 〉 ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀 ) | |
| 9 | eqid | ⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) | |
| 10 | 8 6 9 | oppcuprcl3 | ⊢ ( 𝜑 → 𝑊 ∈ ( Base ‘ 𝐸 ) ) |
| 11 | 8 5 1 | oppcuprcl4 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 12 | 8 6 3 | oppcuprcl5 | ⊢ ( 𝜑 → 𝑀 ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 𝑊 ) ) |
| 13 | 1 9 2 3 4 10 7 11 12 5 6 | oppcup | ⊢ ( 𝜑 → ( 𝑋 ( 〈 𝐹 , tpos 𝐺 〉 ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀 ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( ( 𝐹 ‘ 𝑦 ) 𝐽 𝑊 ) ∃! 𝑘 ∈ ( 𝑦 𝐻 𝑋 ) 𝑔 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑋 ) 〉 ∙ 𝑊 ) ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ) ) ) |
| 14 | 8 13 | mpbid | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( ( 𝐹 ‘ 𝑦 ) 𝐽 𝑊 ) ∃! 𝑘 ∈ ( 𝑦 𝐻 𝑋 ) 𝑔 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑋 ) 〉 ∙ 𝑊 ) ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ) ) |