This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An isomorphism in the opposite category. See also remark 3.9 in Adamek p. 28. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppcsect.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| oppcsect.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | ||
| oppcsect.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| oppcsect.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| oppcsect.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| oppciso.s | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | ||
| oppciso.t | ⊢ 𝐽 = ( Iso ‘ 𝑂 ) | ||
| Assertion | oppciso | ⊢ ( 𝜑 → ( 𝑋 𝐽 𝑌 ) = ( 𝑌 𝐼 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcsect.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | oppcsect.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| 3 | oppcsect.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 4 | oppcsect.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | oppcsect.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | oppciso.s | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | |
| 7 | oppciso.t | ⊢ 𝐽 = ( Iso ‘ 𝑂 ) | |
| 8 | eqid | ⊢ ( Inv ‘ 𝐶 ) = ( Inv ‘ 𝐶 ) | |
| 9 | eqid | ⊢ ( Inv ‘ 𝑂 ) = ( Inv ‘ 𝑂 ) | |
| 10 | 1 2 3 4 5 8 9 | oppcinv | ⊢ ( 𝜑 → ( 𝑋 ( Inv ‘ 𝑂 ) 𝑌 ) = ( 𝑌 ( Inv ‘ 𝐶 ) 𝑋 ) ) |
| 11 | 10 | dmeqd | ⊢ ( 𝜑 → dom ( 𝑋 ( Inv ‘ 𝑂 ) 𝑌 ) = dom ( 𝑌 ( Inv ‘ 𝐶 ) 𝑋 ) ) |
| 12 | 2 1 | oppcbas | ⊢ 𝐵 = ( Base ‘ 𝑂 ) |
| 13 | 2 | oppccat | ⊢ ( 𝐶 ∈ Cat → 𝑂 ∈ Cat ) |
| 14 | 3 13 | syl | ⊢ ( 𝜑 → 𝑂 ∈ Cat ) |
| 15 | 12 9 14 4 5 7 | isoval | ⊢ ( 𝜑 → ( 𝑋 𝐽 𝑌 ) = dom ( 𝑋 ( Inv ‘ 𝑂 ) 𝑌 ) ) |
| 16 | 1 8 3 5 4 6 | isoval | ⊢ ( 𝜑 → ( 𝑌 𝐼 𝑋 ) = dom ( 𝑌 ( Inv ‘ 𝐶 ) 𝑋 ) ) |
| 17 | 11 15 16 | 3eqtr4d | ⊢ ( 𝜑 → ( 𝑋 𝐽 𝑌 ) = ( 𝑌 𝐼 𝑋 ) ) |