This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The section relation is a relation between morphisms from X to Y and morphisms from Y to X . (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issect.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| issect.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| issect.o | ⊢ · = ( comp ‘ 𝐶 ) | ||
| issect.i | ⊢ 1 = ( Id ‘ 𝐶 ) | ||
| issect.s | ⊢ 𝑆 = ( Sect ‘ 𝐶 ) | ||
| issect.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| issect.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| issect.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | sectss | ⊢ ( 𝜑 → ( 𝑋 𝑆 𝑌 ) ⊆ ( ( 𝑋 𝐻 𝑌 ) × ( 𝑌 𝐻 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issect.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | issect.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 3 | issect.o | ⊢ · = ( comp ‘ 𝐶 ) | |
| 4 | issect.i | ⊢ 1 = ( Id ‘ 𝐶 ) | |
| 5 | issect.s | ⊢ 𝑆 = ( Sect ‘ 𝐶 ) | |
| 6 | issect.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 7 | issect.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 8 | issect.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 9 | 1 2 3 4 5 6 7 8 | sectfval | ⊢ ( 𝜑 → ( 𝑋 𝑆 𝑌 ) = { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ) } ) |
| 10 | opabssxp | ⊢ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ) } ⊆ ( ( 𝑋 𝐻 𝑌 ) × ( 𝑌 𝐻 𝑋 ) ) | |
| 11 | 9 10 | eqsstrdi | ⊢ ( 𝜑 → ( 𝑋 𝑆 𝑌 ) ⊆ ( ( 𝑋 𝐻 𝑌 ) × ( 𝑌 𝐻 𝑋 ) ) ) |