This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A section in the opposite category. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppcsect.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| oppcsect.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | ||
| oppcsect.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| oppcsect.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| oppcsect.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| oppcsect.s | ⊢ 𝑆 = ( Sect ‘ 𝐶 ) | ||
| oppcsect.t | ⊢ 𝑇 = ( Sect ‘ 𝑂 ) | ||
| Assertion | oppcsect2 | ⊢ ( 𝜑 → ( 𝑋 𝑇 𝑌 ) = ◡ ( 𝑋 𝑆 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcsect.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | oppcsect.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| 3 | oppcsect.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 4 | oppcsect.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | oppcsect.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | oppcsect.s | ⊢ 𝑆 = ( Sect ‘ 𝐶 ) | |
| 7 | oppcsect.t | ⊢ 𝑇 = ( Sect ‘ 𝑂 ) | |
| 8 | 2 1 | oppcbas | ⊢ 𝐵 = ( Base ‘ 𝑂 ) |
| 9 | eqid | ⊢ ( Hom ‘ 𝑂 ) = ( Hom ‘ 𝑂 ) | |
| 10 | eqid | ⊢ ( comp ‘ 𝑂 ) = ( comp ‘ 𝑂 ) | |
| 11 | eqid | ⊢ ( Id ‘ 𝑂 ) = ( Id ‘ 𝑂 ) | |
| 12 | 2 | oppccat | ⊢ ( 𝐶 ∈ Cat → 𝑂 ∈ Cat ) |
| 13 | 3 12 | syl | ⊢ ( 𝜑 → 𝑂 ∈ Cat ) |
| 14 | 8 9 10 11 7 13 4 5 | sectss | ⊢ ( 𝜑 → ( 𝑋 𝑇 𝑌 ) ⊆ ( ( 𝑋 ( Hom ‘ 𝑂 ) 𝑌 ) × ( 𝑌 ( Hom ‘ 𝑂 ) 𝑋 ) ) ) |
| 15 | relxp | ⊢ Rel ( ( 𝑋 ( Hom ‘ 𝑂 ) 𝑌 ) × ( 𝑌 ( Hom ‘ 𝑂 ) 𝑋 ) ) | |
| 16 | relss | ⊢ ( ( 𝑋 𝑇 𝑌 ) ⊆ ( ( 𝑋 ( Hom ‘ 𝑂 ) 𝑌 ) × ( 𝑌 ( Hom ‘ 𝑂 ) 𝑋 ) ) → ( Rel ( ( 𝑋 ( Hom ‘ 𝑂 ) 𝑌 ) × ( 𝑌 ( Hom ‘ 𝑂 ) 𝑋 ) ) → Rel ( 𝑋 𝑇 𝑌 ) ) ) | |
| 17 | 14 15 16 | mpisyl | ⊢ ( 𝜑 → Rel ( 𝑋 𝑇 𝑌 ) ) |
| 18 | relcnv | ⊢ Rel ◡ ( 𝑋 𝑆 𝑌 ) | |
| 19 | 18 | a1i | ⊢ ( 𝜑 → Rel ◡ ( 𝑋 𝑆 𝑌 ) ) |
| 20 | 1 2 3 4 5 6 7 | oppcsect | ⊢ ( 𝜑 → ( 𝑓 ( 𝑋 𝑇 𝑌 ) 𝑔 ↔ 𝑔 ( 𝑋 𝑆 𝑌 ) 𝑓 ) ) |
| 21 | vex | ⊢ 𝑓 ∈ V | |
| 22 | vex | ⊢ 𝑔 ∈ V | |
| 23 | 21 22 | brcnv | ⊢ ( 𝑓 ◡ ( 𝑋 𝑆 𝑌 ) 𝑔 ↔ 𝑔 ( 𝑋 𝑆 𝑌 ) 𝑓 ) |
| 24 | 20 23 | bitr4di | ⊢ ( 𝜑 → ( 𝑓 ( 𝑋 𝑇 𝑌 ) 𝑔 ↔ 𝑓 ◡ ( 𝑋 𝑆 𝑌 ) 𝑔 ) ) |
| 25 | 17 19 24 | eqbrrdv | ⊢ ( 𝜑 → ( 𝑋 𝑇 𝑌 ) = ◡ ( 𝑋 𝑆 𝑌 ) ) |