This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An opposite category is a category. (Contributed by Zhi Wang, 23-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppccatb.o | |- O = ( oppCat ` C ) |
|
| oppccatb.c | |- ( ph -> C e. V ) |
||
| Assertion | oppccatb | |- ( ph -> ( C e. Cat <-> O e. Cat ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppccatb.o | |- O = ( oppCat ` C ) |
|
| 2 | oppccatb.c | |- ( ph -> C e. V ) |
|
| 3 | 1 | oppccat | |- ( C e. Cat -> O e. Cat ) |
| 4 | eqid | |- ( oppCat ` O ) = ( oppCat ` O ) |
|
| 5 | 4 | oppccat | |- ( O e. Cat -> ( oppCat ` O ) e. Cat ) |
| 6 | 1 | 2oppchomf | |- ( Homf ` C ) = ( Homf ` ( oppCat ` O ) ) |
| 7 | 6 | a1i | |- ( ph -> ( Homf ` C ) = ( Homf ` ( oppCat ` O ) ) ) |
| 8 | 1 | 2oppccomf | |- ( comf ` C ) = ( comf ` ( oppCat ` O ) ) |
| 9 | 8 | a1i | |- ( ph -> ( comf ` C ) = ( comf ` ( oppCat ` O ) ) ) |
| 10 | fvexd | |- ( ph -> ( oppCat ` O ) e. _V ) |
|
| 11 | 7 9 2 10 | catpropd | |- ( ph -> ( C e. Cat <-> ( oppCat ` O ) e. Cat ) ) |
| 12 | 5 11 | imbitrrid | |- ( ph -> ( O e. Cat -> C e. Cat ) ) |
| 13 | 3 12 | impbid2 | |- ( ph -> ( C e. Cat <-> O e. Cat ) ) |