This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for oppcmndc . Everything is true for two distinct elements in a singleton or an empty set (since it is impossible). Note that if this theorem and oppcendc are in -. x = y form, then both proofs should be one step shorter. (Contributed by Zhi Wang, 16-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | oppcmndclem.1 | ⊢ ( 𝜑 → 𝐵 = { 𝐴 } ) | |
| Assertion | oppcmndclem | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ≠ 𝑌 → 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcmndclem.1 | ⊢ ( 𝜑 → 𝐵 = { 𝐴 } ) | |
| 2 | df-ne | ⊢ ( 𝑋 ≠ 𝑌 ↔ ¬ 𝑋 = 𝑌 ) | |
| 3 | eqeq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 = 𝑦 ↔ 𝑋 = 𝑦 ) ) | |
| 4 | eqeq2 | ⊢ ( 𝑦 = 𝑌 → ( 𝑋 = 𝑦 ↔ 𝑋 = 𝑌 ) ) | |
| 5 | mosn | ⊢ ( 𝐵 = { 𝐴 } → ∃* 𝑥 𝑥 ∈ 𝐵 ) | |
| 6 | 1 5 | syl | ⊢ ( 𝜑 → ∃* 𝑥 𝑥 ∈ 𝐵 ) |
| 7 | moel | ⊢ ( ∃* 𝑥 𝑥 ∈ 𝐵 ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 𝑥 = 𝑦 ) | |
| 8 | 6 7 | sylib | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 𝑥 = 𝑦 ) |
| 9 | 8 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 𝑥 = 𝑦 ) |
| 10 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) | |
| 11 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) | |
| 12 | 3 4 9 10 11 | rspc2dv | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑋 = 𝑌 ) |
| 13 | 12 | pm2.24d | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ¬ 𝑋 = 𝑌 → 𝜓 ) ) |
| 14 | 2 13 | biimtrid | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ≠ 𝑌 → 𝜓 ) ) |