This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The double opposite category has the same morphisms as the original category. Intended for use with property lemmas such as monpropd . (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | oppcbas.1 | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| Assertion | 2oppchomf | ⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ ( oppCat ‘ 𝑂 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcbas.1 | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| 2 | eqid | ⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐶 ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 4 | 2 3 | homffn | ⊢ ( Homf ‘ 𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) |
| 5 | fnrel | ⊢ ( ( Homf ‘ 𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) → Rel ( Homf ‘ 𝐶 ) ) | |
| 6 | 4 5 | ax-mp | ⊢ Rel ( Homf ‘ 𝐶 ) |
| 7 | relxp | ⊢ Rel ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) | |
| 8 | 4 | fndmi | ⊢ dom ( Homf ‘ 𝐶 ) = ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) |
| 9 | 8 | releqi | ⊢ ( Rel dom ( Homf ‘ 𝐶 ) ↔ Rel ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
| 10 | 7 9 | mpbir | ⊢ Rel dom ( Homf ‘ 𝐶 ) |
| 11 | tpostpos2 | ⊢ ( ( Rel ( Homf ‘ 𝐶 ) ∧ Rel dom ( Homf ‘ 𝐶 ) ) → tpos tpos ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐶 ) ) | |
| 12 | 6 10 11 | mp2an | ⊢ tpos tpos ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐶 ) |
| 13 | eqid | ⊢ ( oppCat ‘ 𝑂 ) = ( oppCat ‘ 𝑂 ) | |
| 14 | 1 2 | oppchomf | ⊢ tpos ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝑂 ) |
| 15 | 13 14 | oppchomf | ⊢ tpos tpos ( Homf ‘ 𝐶 ) = ( Homf ‘ ( oppCat ‘ 𝑂 ) ) |
| 16 | 12 15 | eqtr3i | ⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ ( oppCat ‘ 𝑂 ) ) |