This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The double opposite category has the same composition as the original category. Intended for use with property lemmas such as monpropd . (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | oppcbas.1 | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| Assertion | 2oppccomf | ⊢ ( compf ‘ 𝐶 ) = ( compf ‘ ( oppCat ‘ 𝑂 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcbas.1 | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 3 | 1 2 | oppcbas | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝑂 ) |
| 4 | eqid | ⊢ ( comp ‘ 𝑂 ) = ( comp ‘ 𝑂 ) | |
| 5 | eqid | ⊢ ( oppCat ‘ 𝑂 ) = ( oppCat ‘ 𝑂 ) | |
| 6 | simpr1 | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) | |
| 7 | simpr2 | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) | |
| 8 | simpr3 | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑧 ∈ ( Base ‘ 𝐶 ) ) | |
| 9 | 3 4 5 6 7 8 | oppcco | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( oppCat ‘ 𝑂 ) ) 𝑧 ) 𝑓 ) = ( 𝑓 ( 〈 𝑧 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑥 ) 𝑔 ) ) |
| 10 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 11 | 2 10 1 8 7 6 | oppcco | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑓 ( 〈 𝑧 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑥 ) 𝑔 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) |
| 12 | 9 11 | eqtr2d | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( oppCat ‘ 𝑂 ) ) 𝑧 ) 𝑓 ) ) |
| 13 | 12 | ralrimivw | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) → ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( oppCat ‘ 𝑂 ) ) 𝑧 ) 𝑓 ) ) |
| 14 | 13 | ralrimivw | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) → ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( oppCat ‘ 𝑂 ) ) 𝑧 ) 𝑓 ) ) |
| 15 | 14 | ralrimivvva | ⊢ ( ⊤ → ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( oppCat ‘ 𝑂 ) ) 𝑧 ) 𝑓 ) ) |
| 16 | eqid | ⊢ ( comp ‘ ( oppCat ‘ 𝑂 ) ) = ( comp ‘ ( oppCat ‘ 𝑂 ) ) | |
| 17 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 18 | eqidd | ⊢ ( ⊤ → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) ) | |
| 19 | 1 2 | 2oppcbas | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ ( oppCat ‘ 𝑂 ) ) |
| 20 | 19 | a1i | ⊢ ( ⊤ → ( Base ‘ 𝐶 ) = ( Base ‘ ( oppCat ‘ 𝑂 ) ) ) |
| 21 | 1 | 2oppchomf | ⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ ( oppCat ‘ 𝑂 ) ) |
| 22 | 21 | a1i | ⊢ ( ⊤ → ( Homf ‘ 𝐶 ) = ( Homf ‘ ( oppCat ‘ 𝑂 ) ) ) |
| 23 | 10 16 17 18 20 22 | comfeq | ⊢ ( ⊤ → ( ( compf ‘ 𝐶 ) = ( compf ‘ ( oppCat ‘ 𝑂 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( oppCat ‘ 𝑂 ) ) 𝑧 ) 𝑓 ) ) ) |
| 24 | 15 23 | mpbird | ⊢ ( ⊤ → ( compf ‘ 𝐶 ) = ( compf ‘ ( oppCat ‘ 𝑂 ) ) ) |
| 25 | 24 | mptru | ⊢ ( compf ‘ 𝐶 ) = ( compf ‘ ( oppCat ‘ 𝑂 ) ) |