This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An opposite category is a category. (Contributed by Zhi Wang, 23-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppccatb.o | ||
| oppccatb.c | |||
| Assertion | oppccatb |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppccatb.o | ||
| 2 | oppccatb.c | ||
| 3 | 1 | oppccat | |
| 4 | eqid | ||
| 5 | 4 | oppccat | |
| 6 | 1 | 2oppchomf | |
| 7 | 6 | a1i | |
| 8 | 1 | 2oppccomf | |
| 9 | 8 | a1i | |
| 10 | fvexd | ||
| 11 | 7 9 2 10 | catpropd | |
| 12 | 5 11 | imbitrrid | |
| 13 | 3 12 | impbid2 |