This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of mndpfo as of 23-Jan-2020. An operation with a left and right identity element is onto. (Contributed by FL, 2-Nov-2009) (Revised by Mario Carneiro, 22-Dec-2013) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | opidonOLD.1 | ⊢ 𝑋 = dom dom 𝐺 | |
| Assertion | opidonOLD | ⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → 𝐺 : ( 𝑋 × 𝑋 ) –onto→ 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opidonOLD.1 | ⊢ 𝑋 = dom dom 𝐺 | |
| 2 | inss1 | ⊢ ( Magma ∩ ExId ) ⊆ Magma | |
| 3 | 2 | sseli | ⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → 𝐺 ∈ Magma ) |
| 4 | 1 | ismgmOLD | ⊢ ( 𝐺 ∈ Magma → ( 𝐺 ∈ Magma ↔ 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ) |
| 5 | 4 | ibi | ⊢ ( 𝐺 ∈ Magma → 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |
| 6 | 3 5 | syl | ⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |
| 7 | inss2 | ⊢ ( Magma ∩ ExId ) ⊆ ExId | |
| 8 | 7 | sseli | ⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → 𝐺 ∈ ExId ) |
| 9 | 1 | isexid | ⊢ ( 𝐺 ∈ ExId → ( 𝐺 ∈ ExId ↔ ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) ) |
| 10 | 9 | biimpd | ⊢ ( 𝐺 ∈ ExId → ( 𝐺 ∈ ExId → ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) ) |
| 11 | 8 8 10 | sylc | ⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) |
| 12 | simpl | ⊢ ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) → ( 𝑢 𝐺 𝑥 ) = 𝑥 ) | |
| 13 | 12 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) → ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) |
| 14 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑢 𝐺 𝑥 ) = ( 𝑢 𝐺 𝑦 ) ) | |
| 15 | id | ⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) | |
| 16 | 14 15 | eqeq12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ↔ ( 𝑢 𝐺 𝑦 ) = 𝑦 ) ) |
| 17 | 16 | rspcv | ⊢ ( 𝑦 ∈ 𝑋 → ( ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 → ( 𝑢 𝐺 𝑦 ) = 𝑦 ) ) |
| 18 | eqcom | ⊢ ( 𝑦 = ( 𝑢 𝐺 𝑥 ) ↔ ( 𝑢 𝐺 𝑥 ) = 𝑦 ) | |
| 19 | 14 | eqeq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑢 𝐺 𝑥 ) = 𝑦 ↔ ( 𝑢 𝐺 𝑦 ) = 𝑦 ) ) |
| 20 | 18 19 | bitrid | ⊢ ( 𝑥 = 𝑦 → ( 𝑦 = ( 𝑢 𝐺 𝑥 ) ↔ ( 𝑢 𝐺 𝑦 ) = 𝑦 ) ) |
| 21 | 20 | rspcev | ⊢ ( ( 𝑦 ∈ 𝑋 ∧ ( 𝑢 𝐺 𝑦 ) = 𝑦 ) → ∃ 𝑥 ∈ 𝑋 𝑦 = ( 𝑢 𝐺 𝑥 ) ) |
| 22 | 21 | ex | ⊢ ( 𝑦 ∈ 𝑋 → ( ( 𝑢 𝐺 𝑦 ) = 𝑦 → ∃ 𝑥 ∈ 𝑋 𝑦 = ( 𝑢 𝐺 𝑥 ) ) ) |
| 23 | 17 22 | syld | ⊢ ( 𝑦 ∈ 𝑋 → ( ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 → ∃ 𝑥 ∈ 𝑋 𝑦 = ( 𝑢 𝐺 𝑥 ) ) ) |
| 24 | 13 23 | syl5 | ⊢ ( 𝑦 ∈ 𝑋 → ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) → ∃ 𝑥 ∈ 𝑋 𝑦 = ( 𝑢 𝐺 𝑥 ) ) ) |
| 25 | 24 | reximdv | ⊢ ( 𝑦 ∈ 𝑋 → ( ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) → ∃ 𝑢 ∈ 𝑋 ∃ 𝑥 ∈ 𝑋 𝑦 = ( 𝑢 𝐺 𝑥 ) ) ) |
| 26 | 25 | impcom | ⊢ ( ( ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ 𝑦 ∈ 𝑋 ) → ∃ 𝑢 ∈ 𝑋 ∃ 𝑥 ∈ 𝑋 𝑦 = ( 𝑢 𝐺 𝑥 ) ) |
| 27 | 26 | ralrimiva | ⊢ ( ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) → ∀ 𝑦 ∈ 𝑋 ∃ 𝑢 ∈ 𝑋 ∃ 𝑥 ∈ 𝑋 𝑦 = ( 𝑢 𝐺 𝑥 ) ) |
| 28 | 11 27 | syl | ⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → ∀ 𝑦 ∈ 𝑋 ∃ 𝑢 ∈ 𝑋 ∃ 𝑥 ∈ 𝑋 𝑦 = ( 𝑢 𝐺 𝑥 ) ) |
| 29 | foov | ⊢ ( 𝐺 : ( 𝑋 × 𝑋 ) –onto→ 𝑋 ↔ ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 ∃ 𝑢 ∈ 𝑋 ∃ 𝑥 ∈ 𝑋 𝑦 = ( 𝑢 𝐺 𝑥 ) ) ) | |
| 30 | 6 28 29 | sylanbrc | ⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → 𝐺 : ( 𝑋 × 𝑋 ) –onto→ 𝑋 ) |